无机材料学报 ›› 2022, Vol. 37 ›› Issue (6): 660-668.DOI: 10.15541/jim20210550

所属专题: 【虚拟专辑】计算材料 【信息功能】Max层状材料、MXene及其他二维材料

• 研究论文 • 上一篇    下一篇

表面端基卤化Ti3C2 MXene应用于锂离子电池高容量电极材料的研究

肖美霞1(), 李苗苗1, 宋二红2(), 宋海洋1(), 李钊1, 毕佳颖1   

  1. 1.西安石油大学 材料科学与工程学院, 西安 710065
    2.中国科学院 上海硅酸盐研究所 高性能陶瓷和超微结构国家重点实验室, 上海 200050
  • 收稿日期:2021-08-29 修回日期:2021-10-24 出版日期:2022-06-20 网络出版日期:2021-12-16
  • 通讯作者: 宋二红, 副研究员. E-mail: ehsong@mail.sic.ac.cn;
    宋海洋, 教授. E-mail: ygsfshy@sohu.com
  • 作者简介:肖美霞(1982-), 女, 副教授. E-mail: mxxiao@xsyu.edu.cn
  • 基金资助:
    国家自然科学基金(51801155);陕西省科学基金(2021JZ-53);上海市自然科学基金(21ZR1472900);陕西省教育厅科研计划(21JK0848);西安石油大学研究生创新项目基金(YCS20211059);西安石油大学材料科学与工程学院西安市高性能油气田材料重点实验室项目

Halogenated Ti3C2 MXene as High Capacity Electrode Material for Li-ion Batteries

XIAO Meixia1(), LI Miaomiao1, SONG Erhong2(), SONG Haiyang1(), LI Zhao1, BI Jiaying1   

  1. 1. College of Materials Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China
    2. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • Received:2021-08-29 Revised:2021-10-24 Published:2022-06-20 Online:2021-12-16
  • Contact: SONG Erhong, associate professor. E-mail: ehsong@mail.sic.ac.cn;
    SONG Haiyang, professor. E-mail: ygsfshy@sohu.com
  • About author:XIAO Meixia (1982–), female, associate professor. E-mail: mxxiao@xsyu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(51801155);Science Foundation of Shanxi Province,(2021JZ-53);Shanghai Natural Science Foundation(21ZR1472900);Scientific Research Program Funded by Shaanxi Provincial Education Department(21JK0848);Program for Graduate Innovation Fund of Xian Shiyou University(YCS20211059);Fund of Xi'an Key Laboratory of High Performance Oil and Gas Field Materials, School of Material Science and Engineering, Xi'an Shiyou University

摘要:

Mxenes以其优异的比表面积、高导电率和组分可调性而受到广泛研究, 并用作高效锂离子电池的电极材料。然而, 其有限的存储容量以及锂离子扩散引起的剧烈晶格膨胀限制了MXenes作为电极材料的应用。本研究设计了具有代表性的MXene材料卤化(氟化、氯化或溴化)-Ti3C2。采用基于密度泛函理论的范德瓦耳斯修正的第一性原理计算方法研究了表面端基(T=F-、Cl-和Br-)修饰对锂离子电池中Ti3C2负极的原子结构、电学性质、力学性质以及电化学性能的影响。研究表明, Ti3C2T2单层具有良好的结构稳定性、力学性质和导电性质。相比Ti3C2F2和Ti3C2Br2, Ti3C2Cl2单层具有较大的弹性模量(沿二维薄膜两个方向的弹性模量分别为321.70和329.43 N/m)、较低的锂离子扩散势垒(0.275 eV)、开路电压(0.54 V)和较大的理论存储容量(化学计量比为Ti3C2Cl2Li6时达674.21 mA·h/g), 这表明Ti3C2Cl2单层作为锂电池电极具有良好的安全稳定性和充放电速率。此外, 端基氯化扩大了层间距, 进而提高了Ti3C2Cl2中锂离子的可穿透性和快速充放电速率。本研究表明, 表面氯化的Ti3C2纳米薄膜是一种很有前途的锂电池负极材料, 为其它的MXenes基电极材料设计与开发提供了重要的设计思路。

关键词: MXenes, Ti3C2, 表面端基修饰, 第一性原理计算, 锂离子电池负极, 层间距

Abstract:

MXenes have been widely studied for their excellent specific surface area, high conductivity and composition tunability, which have been used as a highly efficient electrode material for lithium-ion batteries (LIBs). However, limited storage capacity and severe lattice expansion caused by Li-ions diffusion restrict the application of MXenes as electrode materials. Here, Ti3C2 MXenes with surface halogenation (fluorination, chlorination and bromination) as representative MXene materials were designed. Effects of surface functionalization on the atomic structures, electronic properties, mechanical properties, and electrochemical performance of Ti3C2T2 (T = F, Cl and Br) anode in LIBs were investigated using first-principles calculations based on density functional theory with van der Waals correction. The results reveal that Ti3C2T2 MXenes exhibit metallic conductivity with improved structural stability and mechanical strength. Compared with Ti3C2F2 and Ti3C2Br2, Ti3C2Cl2 exhibits the large elastic modulus (321.70 and 329.43 N/m along x and y directions, respectively), low diffusion barrier (0.275 eV), high open circuit voltage (0.54 eV), and storage capacity (674.21 mA·h/g) with stoichiometric ratio of Ti3C2Cl2Li6, which renders the enhanced rate performance and endures the repeated lattice expansion and contraction during the charge/ discharge process. Moreover, surface chlorination yields expanded interlayer spacing, which can improve Li-ion accessibility and fast charge-discharge rate in Ti3C2Cl2. The research demonstrates that Cl- terminated Ti3C2 is a promising anode material, and provides effective and reversible routes to engineering other MXenes as anode materials for LIBs.

Key words: MXenes, Ti3C2, surface end group modification, first-principles calculation, Li-ion battery anode, interlayer spacing

中图分类号: