无机材料学报 ›› 2022, Vol. 37 ›› Issue (9): 1016-1022.DOI: 10.15541/jim20210739
所属专题: 【能源环境】金属有机框架材料
宿拿拿1(), 韩静茹1, 郭印毫1, 王晨宇1, 石文华1, 吴亮1, 胡执一1,2, 刘婧1, 李昱1,2(), 苏宝连1,3
收稿日期:
2021-12-03
修回日期:
2022-02-08
出版日期:
2022-09-20
网络出版日期:
2022-02-21
通讯作者:
李 昱, 教授. E-mail: yu.li@whut.edu.cn作者简介:
宿拿拿(1997-), 女, 硕士研究生. E-mail: nana.su@whut.edu.cn
基金资助:
SU Nana1(), HAN Jingru1, GUO Yinhao1, WANG Chenyu1, SHI Wenhua1, WU Liang1, HU Zhiyi1,2, LIU Jing1, LI Yu1,2(), SU Baolian1,3
Received:
2021-12-03
Revised:
2022-02-08
Published:
2022-09-20
Online:
2022-02-21
Contact:
LI Yu, professor. E-mail: yu.li@whut.edu.cnAbout author:
SU Nana (1997-), female, Master candidate. E-mail: nana.su@whut.edu.cn
Supported by:
摘要:
锂离子电池已广泛应用于各种便携式电子设备及新能源汽车等领域, 但随着电子设备的不断更新换代及电动汽车的快速发展, 理论比容量较低的传统石墨负极(372 mAh/g)已无法满足社会的需求。基于此, 本工作设计并制备了一种Zn基金属有机物框架(ZIF-8)衍生的三维网络状硅碳(Si@NC)复合材料用于锂离子电池性能研究。首先对纳米硅表面进行化学改性,然后在改性的硅表面原位生长ZIF-8小颗粒(Si@ZIF-8), 最后对Si@ZIF-8碳化得到Si@NC复合材料。研究表明, Si@NC复合材料的三维网络状多孔结构既可以很好地限制硅的体积膨胀, 又能极大地提升材料的电导率, 展现出稳定的循环性能和良好的倍率性能, 在5 A/g的大电流下能保持760 mAh/g的放电比容量。与商业三元正极材料组装的全电池也表现出较好的性能, 在0.4C (1C =160 mA/g)下循环50圈依然可以保持60.4%的比容量。这些研究结果说明该Si@NC复合材料具有较好的应用前景。
中图分类号:
宿拿拿, 韩静茹, 郭印毫, 王晨宇, 石文华, 吴亮, 胡执一, 刘婧, 李昱, 苏宝连. 基于ZIF-8的三维网络硅碳复合材料锂离子电池性能研究[J]. 无机材料学报, 2022, 37(9): 1016-1022.
SU Nana, HAN Jingru, GUO Yinhao, WANG Chenyu, SHI Wenhua, WU Liang, HU Zhiyi, LIU Jing, LI Yu, SU Baolian. ZIF-8-derived Three-dimensional Silicon-carbon Network Composite for High-performance Lithium-ion Batteries[J]. Journal of Inorganic Materials, 2022, 37(9): 1016-1022.
图3 Si@NC样品的(a)TEM, (b)HRTEM, (c) HAADF-STEM, (d) SAED照片和(e~f) EDX元素分布图
Fig. 3 (a) TEM, (b) HRTEM, (c) HAADF-STEM images, (d) SAED pattern (rectangular area in (c)), and (e-f) corresponding EDX elemental maps of Si@NC (d) Rectangular area in (c); (e-f) Corresponding area in (c), Si (green), C (yellow), N (blue), O (cyan) and Zn (red)
图4 Si@NC和Si@PC样品的(a)XRD图谱和(b)拉曼光谱图, Si@NC的(c)氮气吸/脱附等温线和(d)孔径分布图
Fig. 4 (a) XRD patterns and (b) Raman spectra of Si@NC and Si@PC, (c) nitrogen adsorption-desorption isotherm and (d) pore size distribution of Si@NC
图5 Si@NC的(a) CV曲线和(b)在0.2 A/g电流密度下前三圈的充放电曲线, Si@NC和Si@PC的(c)倍率性能和(d)在0.5 A/g电流密度下的循环性能, (e) Si@NC、NC和Si@PC在1 A/g电流密度下的长循环性能(黑色圆圈表示Si@NC的库仑效率)
Fig. 5 (a) CV curves at a scanning rate of 0.2 mV/s and (b) charge-discharge curves for initial 3 cycles at 0.2 A/g of Si@NC, (c) rate performances and (d) cycling performances at 0.5 A/g of Si@NC and Si@PC, and (e) long cycling performances of Si@NC, NC and Si@PC at 1 A/g (black circles showing Coulombic efficiencies of Si@NC)
图6 Si@NC//NCM622全电池(a)在1~4.5 V范围的充放电曲线和(b)0.4C下的循环性能
Fig. 6 (a) Charge-discharge profiles in the range of 1~4.5 V, and (b) cycle performance at 0.4C of Si@NC//NCM622 full-cell
图S3 (a)纯Si、Si@NC和Si@PC的电化学阻抗谱图, (b) Si@NC和纯Si前5圈的库仑效率, (c)纯Si在1 A/g下的长循环性能
Fig. S3 EIS plots of pure Si, Si@NC and Si@PC, (b) Coulombic efficiencies of Si@NC and pure Si for the first 5 cycles, (c) cycle performance of pure Si at 1 A/g
图S4 半电池中Si@NC电极(a)循环前、循环(b)50和(c)200圈后的截面及表面SEM照片
Fig. S4 Cross section and surface SEM images of Si@NC electrodes for half-cell (a) before the cycle, after (b)50 and (c) 200 cycles
Anode material | Cycle performance/(mAh·g-1) (Cycle number) | Current density/ (A·g-1) | Rate capability/(mAh·g-1) (Current density/(A·g-1)) | Ref. |
---|---|---|---|---|
Three-dimensional Network Si/C | 666 (500th) | 1 | 760 (5) | This work |
MHR-Si/rGO | 530 (400th) | 1 | 513 (5) | [1] |
Si@C/Co/CNTs | 700 (500th) | 1 | 480 (5) | [2] |
Pseudographite/Si/Ni | 800 (500th) | 1 | 271 (5) | [3] |
Si@void@C/C-2 | 450 (500th) | 1 | 410 (3.2) | [4] |
Yolk-shell structured Si-based anode | 657 (200th) | 1 | 350 (5) | [5] |
Si@C-ZIF@carbon Nanofibers | 760 (500th) | 1 | 523.9 (5) | [6] |
表S1 Si/C复合材料电化学性能比较
Table S1 Comparison of electrochemical performance for Si/C composite materials
Anode material | Cycle performance/(mAh·g-1) (Cycle number) | Current density/ (A·g-1) | Rate capability/(mAh·g-1) (Current density/(A·g-1)) | Ref. |
---|---|---|---|---|
Three-dimensional Network Si/C | 666 (500th) | 1 | 760 (5) | This work |
MHR-Si/rGO | 530 (400th) | 1 | 513 (5) | [1] |
Si@C/Co/CNTs | 700 (500th) | 1 | 480 (5) | [2] |
Pseudographite/Si/Ni | 800 (500th) | 1 | 271 (5) | [3] |
Si@void@C/C-2 | 450 (500th) | 1 | 410 (3.2) | [4] |
Yolk-shell structured Si-based anode | 657 (200th) | 1 | 350 (5) | [5] |
Si@C-ZIF@carbon Nanofibers | 760 (500th) | 1 | 523.9 (5) | [6] |
[1] | CAI Y, WANG H E, ZHAO X, et al. Walnut-like porous core/shell TiO2 with hybridized phases enabling fast and stable lithium storage. ACS Applied Materials & Interfaces, 2017, 9(12): 10652-10663. |
[2] |
ZHANG L, SHAO Q, ZHANG J. An overview of non-noble metal electrocatalysts and their associated air cathodes for Mg-air batteries. Materials Reports: Energy, 2021, 1(1): 100002.
DOI URL |
[3] | LU Y, RONG X, HU Y S, et al. Research and development of advanced battery materials in China. Energy Storage Materials, 2019, 23: 144-153. |
[4] |
GANNETT C N, MELECIO-ZAMBRANO L, THEIBAULT M, et al. Organic electrode materials for fast-rate, high-power battery applications. Materials Reports: Energy, 2021, 1(1): 100008.
DOI URL |
[5] |
WU F, MAIER J, YU Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chemical Society Reviews, 2020, 49(5): 1569-1614.
DOI URL |
[6] |
LI G, WANG Y, GUO H, et al. Direct plasma phosphorization of Cu foam for Li ion batteries. Journal of Materials Chemistry A, 2020, 8(33): 16920-16925.
DOI URL |
[7] |
LIU J, ZHANG Q, ZHANG T, et al. A robust ion-conductive biopolymer as a binder for Si anodes of lithium-ion batteries. Advanced Functional Materials, 2015, 25(23): 3599-3605.
DOI URL |
[8] | SUN Z, WANG G, CAI T, et al. Sandwich-structured graphite- metallic silicon@C nanocomposites for Li-ion batteries. Electrochimica Acta, 2016, 191: 299-306. |
[9] |
YANG Y, YUAN W, KANG W, et al. Silicon-nanoparticle-based composites for advanced lithium-ion battery anodes. Nanoscale, 2020, 12(14): 7461-7484.
DOI URL |
[10] |
AN W, GAO B, MEI S, et al. Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes. Nature Communications, 2019, 10(1): 1-11.
DOI URL |
[11] |
AN Y, FEI H, ZENG G, et al. Green, scalable, and controllable fabrication of nanoporous silicon from commercial alloy precursors for high-energy lithium-ion batteries. ACS Nano, 2018, 12(5): 4993-5002.
DOI URL |
[12] | LIU N, HUO K, MCDOWELL M T, et al. Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes. Scientific Reports, 2013, 3(1): 1-7. |
[13] |
PARK S, SUNG J, CHAE S, et al. Scalable synthesis of hollow β-SiC/Si anodes via selective thermal oxidation for lithium-ion batteries. ACS Nano, 2020, 14(9): 11548-11557.
DOI URL |
[14] | WU H, CHAN G, CHOI J W, et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nature Nanotechnolagy, 2012, 7(5): 310-315. |
[15] | ZHANG Z, LI H. Sequential-template synthesis of hollowed carbon polyhedron@SiC@Si for lithium-ion battery with high capacity and electrochemical stability. Applied Surface Science, 2020, 514:145920. |
[16] |
WANG J, HUANG W, KIM Y S, et al. Scalable synthesis of nanoporous silicon microparticles for highly cyclable lithium-ion batteries. Nano Research, 2020, 13(6): 1558-1563.
DOI URL |
[17] | BAI Y, ZENG M, WU X, et al. Three-dimensional cage-like Si@ZIF-67 core-shell composites for high-performance lithium storage. Applied Surface Science, 2020, 510: 145477. |
[18] |
XU Y, ZHU Y, WANG C. Mesoporous carbon/silicon composite anodes with enhanced performance for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2(25): 9751-9757.
DOI URL |
[19] |
HERTZBERG B, ALEXEEV A, YUSHIN G. Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space. Journal of the American Chemical Society, 2010, 132(25): 8548-8549.
DOI URL |
[20] |
PARK M H, KIM M G, JOO J, et al. Silicon nanotube battery anodes. Nano Letters, 2009, 9(11): 3844-3847.
DOI URL |
[21] |
JIA H, LI X, SONG J, et al. Hierarchical porous silicon structures with extraordinary mechanical strength as high-performance lithium- ion battery anodes. Nature Communications, 2020, 11(1): 1-9.
DOI URL |
[22] |
LIU B, SOARES P, CHECKLES C, et al. Three-dimensional hierarchical ternary nanostructures for high-performance Li-ion battery anodes. Nano Letters, 2013, 13(7): 3414-3419.
DOI URL |
[23] |
WU L, LI Y, FU Z Y, et al. Hierarchically structured porous materials: synthesis strategies and applications in energy storage. National Science Review, 2020, 7(11): 1667-1701.
DOI URL |
[24] |
ZHOU N, DONG W D, ZHANG Y J, et al. Embedding tin disulfide nanoparticles in two-dimensional porous carbon nanosheet interlayers for fast-charging lithium-sulfur batteries. Science China Materials, 2021, 64(11): 2697-2709.
DOI URL |
[25] |
XIE C, XU Q, SARI H M K, et al. Elastic buffer structured Si/C microsphere anodes via polymerization-induced colloid aggregation. Chemical Communications, 2020, 56(50): 6770-6773.
DOI URL |
[26] |
HONG Y, DONG H, LI J, et al. Enhanced lithium storage performance of porous Si/C composite anodes using a recrystallized NaCl template. Dalton Transactions, 2021, 50(8): 2815-2823.
DOI URL |
[27] | LI C, WANG Y Y, LI H Y, et al. Weaving 3D highly conductive hierarchically interconnected nanoporous web by threading MOF crystals onto multi walled carbon nanotubes for high performance Li-Se battery. Journal of Energy Chemistry, 2021, 59: 396-404. |
[28] | SONG J P, WU L, DONG W D, et al. MOF-derived nitrogen- doped core-shell hierarchical porous carbon confining selenium for advanced lithium-selenium battery. Nanoscale, 2019, 11: 6970-6981 |
[29] |
WANG X, MA X, WANG H, et al. A zinc(II) benzenetricarboxylate metal organic framework with unusual adsorption properties, and its application to the preconcentration of pesticides. Microchimica Acta, 2017, 184(10): 3681-3687.
DOI URL |
[30] |
BAI X J, LIU C, HOU M, et al. Silicon/CNTs/graphene free- standing anode material for lithium-ion battery. Journal of Inorganic Materials, 2017, 32(7): 705-712.
DOI URL |
[31] |
CHAE S, XU Y, YI R, et al. A micrometer-sized silicon/carbon composite anode synthesized by impregnation of petroleum pitch in nanoporous silicon. Advanced Materials, 2021, 33(40): 2103095.
DOI URL |
[32] | HOU Z, LIU H, CHEN P, et al. Nanocaging silicon nanoparticles into a porous carbon framework toward enhanced lithium-ion storage. Particle & Particle Systems Characterization, 2021: 38(9): 2100107. |
[33] | ZHANG Y, CHENG Y, SONG J, et al. Functionalization-assistant ball milling towards Si/graphene anodes in high performance Li-ion batteries. Carbon, 2021, 181: 300-309. |
[34] | WANG L, WANG Z, XIE L, et al. ZIF-67-derived N-doped Co/C nanocubes as high-performance anode materials for lithium-ion batteries. ACS Applied Materials & Interfaces, 2019, 11(18): 16619-16628. |
[35] | TU Z, YANG G, SONG H, et al. Amorphous ZnO quantum dot/mesoporous carbon bubble composites for a high-performance lithium-ion battery anode. ACS Applied Materials & Interfaces, 2017, 9(1): 439-446. |
[36] | CUI J, CUI Y, LI S, et al. Microsized porous SiOx@C composites synthesized through aluminothermic reduction from rice husks and used as anode for lithium-ion batteries. ACS Applied Materials & Interfaces, 2016, 8(44): 30239-30247. |
[1] | 杨卓, 卢勇, 赵庆, 陈军. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报, 2023, 38(6): 589-605. |
[2] | 王洋, 范广新, 刘培, 尹金佩, 刘宝忠, 朱林剑, 罗成果. 钾离子掺杂提高锂离子电池正极锰酸锂性能的微观机制[J]. 无机材料学报, 2022, 37(9): 1023-1029. |
[3] | 朱河圳, 王选朋, 韩康, 杨晨, 万睿哲, 吴黎明, 麦立强. 超高镍LiNi0.91Co0.06Al0.03O2@Ca3(PO4)2正极材料的储锂稳定性的提升机制[J]. 无机材料学报, 2022, 37(9): 1030-1036. |
[4] | 冯锟, 朱勇, 张凯强, 陈长, 刘宇, 高彦峰. 勃姆石纳米片增强锂离子电池隔膜性能研究[J]. 无机材料学报, 2022, 37(9): 1009-1015. |
[5] | 陈莹, 栾伟玲, 陈浩峰, 朱轩辰. 基于应力场的锂离子电池正极多尺度失效研究[J]. 无机材料学报, 2022, 37(8): 918-924. |
[6] | 苏东良, 崔锦, 翟朋博, 郭向欣. 石榴石型Li6.4La3Zr1.4Ta0.6O12对Si/C负极表面固体电解质中间相的调控机制研究[J]. 无机材料学报, 2022, 37(7): 802-808. |
[7] | 江依义, 沈旻, 宋半夏, 李南, 丁祥欢, 郭乐毅, 马国强. 双功能电解液添加剂对锂离子电池高温高电压性能的影响[J]. 无机材料学报, 2022, 37(7): 710-716. |
[8] | 肖美霞, 李苗苗, 宋二红, 宋海洋, 李钊, 毕佳颖. 表面端基卤化Ti3C2 MXene应用于锂离子电池高容量电极材料的研究[J]. 无机材料学报, 2022, 37(6): 660-668. |
[9] | 王禹桐, 张非凡, 许乃才, 王春霞, 崔立山, 黄国勇. 水系锂离子电池负极材料LiTi2(PO4)3的研究进展[J]. 无机材料学报, 2022, 37(5): 481-492. |
[10] | 王晶, 徐守冬, 卢中华, 赵壮壮, 陈良, 张鼎, 郭春丽. 钠离子电池中空结构CoSe2/C负极材料的制备及储钠性能研究[J]. 无机材料学报, 2022, 37(12): 1344-1350. |
[11] | 李昆儒, 胡省辉, 张正富, 郭玉忠, 黄瑞安. 源于溪木贼的高性能锂离子电池三维多孔生物质硅/碳复合负极材料[J]. 无机材料学报, 2021, 36(9): 929-935. |
[12] | 王影, 张文龙, 邢彦锋, 曹苏群, 戴新义, 李晶泽. 非晶态磷酸锂包覆钛酸锂电极在0.01~3.00 V电压范围的性能研究[J]. 无机材料学报, 2021, 36(9): 999-1005. |
[13] | 刘勇, 白海军, 赵奇志, 杨金戈, 李宇杰, 郑春满, 谢凯. LiNi0.8Co0.15Al0.05O2/石墨锂离子电池高荷电存储老化机理研究[J]. 无机材料学报, 2021, 36(2): 175-180. |
[14] | 李锐,王浩,付强,田子玉,王建旭,马小健,杨剑,钱逸泰. 构建亲锂铜基3D集流体实现金属锂的均匀沉积[J]. 无机材料学报, 2020, 35(8): 882-888. |
[15] | 湛菁,徐昌藩,龙怡宇,李启厚. 聚丙烯酰胺凝胶法制备Bi2Mn4O10及其电化学性能[J]. 无机材料学报, 2020, 35(7): 827-833. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||