无机材料学报

• 研究论文 •    

硅电极组分梯度设计抑制力-化学耦合劣化

谭博文, 耿双龙, 张锴, 郑百林   

  1. 同济大学 航空航天与力学学院, 上海 200092
  • 收稿日期:2024-11-11 修回日期:2025-01-21
  • 作者简介:谭博文(1998-),男,硕士研究生. E-mail: tan_bowen@tongji.edu.cn
  • 基金资助:
    国家自然科学基金(12372173); 上海市自然科学基金(23ZR1468600)

Composition-gradient Design of Silicon Electrodes to Mitigate Mechanochemical Coupled Degradation

TAN Bowen, GENG Shuanglong, ZHANG Kai, ZHENG Bailin   

  1. School of Aerospace and Mechanics, Tongji University, 200092 Shanghai, China
  • Received:2024-11-11 Revised:2025-01-21
  • About author:TAN Bowen (1998-),male,Master candidate. E-mail: tan_bowen@tongji.edu.cn
  • Supported by:
    National Natural Science Foundation of China (12372173); Natural Science Foundation of Shanghai (23ZR1468600)

摘要: 作为锂离子电池负极,硅材料具有高能量密度的优点,但其充放电循环中的体积效应会引发活性涂层的上下表面不稳定,且内部极化会诱导产生扩散应力,两者共同导致的结构退化和容量衰减难以避免。受功能梯度材料启发,本研究提出了一种五层复合组分梯度硅电极。通过实验与多尺度力-电-化耦合仿真发现,本研究所设计的对称组分梯度硅电极和线性组分梯度硅电极在减缓力-化学耦合劣化方面效果显著,较传统的均匀电极表现出更好的循环和倍率性能。对称梯度电极锂离子电池在0.2C倍率下循环100次后,比容量为2065 mAh·g-1,容量保持率为81%,而均匀电极为51%。线性梯度电极在1C(1C=2.65 mA·cm-2)倍率下的平均放电容量则是均匀电极的1.5倍,且两类梯度电极循环前后的阻抗变化均小于均匀电极。上述组分梯度电极采用多层复合涂布工艺制备,无需材料改性便能提高电极的结构稳定性和电化学性能,为高性能锂离子电池的设计与制造提供了参考。

关键词: 锂离子电池, 硅电极, 功能梯度材料, 多物理场耦合

Abstract: As anode for lithium-ion batteries, silicon material has the advantage of high energy density. However, the volume effect during charge-discharge cycles causes instability in the active coating's surfaces and diffusion stress induced by internal polarization, leading to inevitable structural degradation and capacity fading. Inspired by functionally graded materials, this study proposed a five-layer composite gradient silicon electrode. Experiments and multi-scale electro-chemo-mechanical coupled model demonstrate that the designed symmetric and linear gradient silicon electrodes effectively mitigate mechanochemical coupled degradation, showing superior cycling and rate performance compared to traditional uniform electrodes. Specifically, the symmetric gradient electrode retains an specific capacity of 2065 mAh·g-1 after 100 cycles at 0.2C rate, with a capacity retention rate of 81%, while that of uniform electrode is 51%. The linear gradient electrode exhibits an average discharge capacity 1.5 times of that of the uniform electrode at 1C rate. Moreover, both types of gradient electrodes demonstrate smaller impedance variations before and after cycling compared to the uniform electrode. These composite gradient electrodes implemented through an innovative multi-layer coating process, improved structural stability and electrochemical performance without material modifications, providing a reference for designing and fabricating high-performance silicon electrodes.

Key words: lithium-ion battery, silicon electrode, functionally graded material, multi-physics field coupling

中图分类号: