• •
许嘉垅1, 秦浩2, 罗昕沂1, 邢娟娟1, 张翔宇2, 顾辉3
收稿日期:2025-11-12
修回日期:2026-02-02
作者简介:许嘉垅(2001–), 女, 硕士研究生. E-mail: xjlong_23@shu.edu.cn
基金资助:XU Jialong1, QIN Hao2, LUO Xinyi1, XING Juanjuan1, ZHANG Xiangyu2, GU Hui3
Received:2025-11-12
Revised:2026-02-02
About author:XU Jialong (2001–), female, Master candidate. E-mail: xjlong_23@shu.edu.cn
Supported by:摘要: BN界面相是SiCf/SiC复合材料的关键组元,优化其成分与微观结构对改善其综合性能与可靠性至关重要。本研究开发了一种基于扫描电子显微镜和激光共聚焦显微镜的智能定位光电联用高通量表征技术,能够对纤维表面同一区域实现多尺度表征,获取BN界面相的表面粗糙度、微观形貌及元素组成等关键信息。该技术通过建立统一坐标系实现快速定位,可在1 h内完成20个组分区域的多尺度分析,整体表征效率提升约1.1倍。研究表明,随着制备过程中Si前驱体的输入流量升高,xSi-BN界面相中Si含量增加,B含量相应降低。Si的引入导致BN结晶度降低,表面活性增强,促使BN吸附空气中的氧并在表面形成凸起颗粒。Si掺杂对BN层状结构及其力学性能具有显著影响。随着Si含量增至8%,与层间滑移相关的“pop-in”现象消失,界面层硬度从14.91 GPa显著降低至8.06 GPa;当Si含量达到11%时,界面剪切强度从32.76 MPa大幅提升至109.07 MPa。该技术为SiCf/SiC复合材料界面相的成分设计、结构调控与性能优化提供了有效的方法支撑。
中图分类号:
许嘉垅, 秦浩, 罗昕沂, 邢娟娟, 张翔宇, 顾辉. xSi-BN/SiC纤维光电联用高通量表征[J]. 无机材料学报, DOI: 10.15541/jim20250457.
XU Jialong, QIN Hao, LUO Xinyi, XING Juanjuan, ZHANG Xiangyu, GU Hui. High-throughput Microstructural Characterization of xSi-BN Coated SiC Fibers by Combining Scanning Electron Microscopy and Laser Scanning Confocal Microscopy[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250457.
| [1] WANG P R, LIU F Q, WANG H,et al. A review of third generation SiC fibers and SiCf/SiC composites. Journal of Materials Science & Technology, 2019, 35(12): 2743. [2] WANG X L, GAO X D, ZHANG Z H, et al. Advances in modifications and high-temperature applications of silicon carbide ceramic matrix composites in aerospace: a focused review. Journal of the European Ceramic Society, 2021, 41(9): 4671. [3] MANOHARAN V, TAMILPERUVALATHAN S. Experimental investigation and prediction of ECDM parameters on fiber reinforced SiC composite using hybrid ERNN-based Sparrow Search Optimization. Materials Today Communications, 2023, 36: 106777. [4] ZHAO G C, JIANG Z H, XI H F, et al. Ultrahigh-temperature mechanical behavior and failure mechanisms of SiCf/SiC composites. Ceramics International, 2023, 49(23): 39391. [5] WU S F, CHEN J X, ZHANG X L, et al. Recent advances in interphase engineering for improved behavior of SiCf/SiC composites. Journal of the European Ceramic Society, 2024, 44(12): 6797. [6] DING J X, MA X K, FAN X M, et al. Failure behavior of interfacial domain in SiC-matrix based composites. Journal of Materials Science & Technology, 2021, 88: 1. [7] CHEN Y, QIU H P, CHEN M W,et al. SiC/SiC composite: matrix boron modification and mechanical properties. Journal of Inorganic Materials, 2025, 40(5): 504. [8] CHEN M L, PAN L, XIA X D, et al. Boron nitride (BN) and BN based multiple-layer interphase for SiCf/SiC composites: a review. Ceramics International, 2022, 48(23): 34107. [9] YANG H T, LU Z L, BIE B X, et al. Microstructure and damage evolution of SiCf/PyC/SiC and SiCf/BN/SiC mini-composites: a synchrotron X-ray computed microtomography study. Ceramics International, 2019, 45(9): 11395. [10] WEI J Y, ZHOU N, GAO M X, et al. Laser ablation of SiC/SiC ceramic matrix composites: morphological characterization, component evolution and oxidation mechanisms. Corrosion Science, 2024, 227: 111762. [11] CHRISTENSEN V L, ZOK F W. Insights into internal[11] CHRISTENSEN V L, ZOK F W. Insights into internal oxidation of SiC/BN/SiC composites. Journal of the American Ceramic Society, 2022, 106(2): 1561-1575. [12] DETWILER K N, OPILA E J.Oxidation of SiC/BN/SiC ceramic matrix composites in dry and wet oxygen at intermediate temperatures.Journal of the European Ceramic Society, 2022, 42(10): 4110-4120. [13] CHENG X, ZHANG Q, YE F, et al. Recent progress on wet-oxygen corrosion resistance of SiCf/SiC composites. Journal of Materials Research and Technology, 2024, 33: 4360-4388. [14] JACOBSON N S, MORSCHER G N, BRYANT D R, et al. High‐Temperature Oxidation of Boron Nitride: II, Boron Nitride Layers in Composites. Journal of the American Ceramic Society, 2004, 82(6): 1473-1482. [15] CHRISTENSEN V L, GAVALDA-DIAZ O, SKILLETT R,et al. Influence of BN microstructure on oxidation of SiC/BN/SiC composites. Journal of the American Ceramic Society, 2025, 108(3): e20230. [16] STÖCKEL S, MARX G, GOEDEL W A. Coating of ceramic SiC, SiBNC, and Al2O3 fibers with SiBN using a continuous CVD process-influence of stoichiometry on stability against oxidation and hydrolysis. Chemical Vapor Deposition, 2007, 13(10): 553. [17] 廖春景, 董绍明, 张翔宇, 等. 一种纤维增强陶瓷基复合材料界面相及其筛选方法: CN1113105257A.2021-07-13 [18] CHRISTENSEN V L, SAMUEL A F, HAN N,et al. Microstructure characterization and process-structure correlations in SiC/BN/SiC minicomposites. Acta Materialia, 2024, 264: 119589. [19] LIU Y S, CHAI N, LI Z, et al. Effect of deposition temperature on deposition kinetics and mechanism of silicon boron nitride coating deposited from SiCl4-BCl3-NH3-H2-Ar mixture using low pressure chemical vapor deposition. Surface and Coatings Technology, 2015, 261: 295. [20] SUN J, LIU W, LV X,et al. Characterization of BN interface and its effect on the mechanical behavior of SiCf/SiC composites. Vacuum, 2023, 211. [21] ZHANG Y H, HU J B, ZHOU L,et al. Influence of fiber surface properties of SiCf/SiC composites on the interfacial debonding behavior. Journal of the European Ceramic Society, 2024, 44(2): 795. [22] WU X C, ZHENG R X, LI L, et al. Research progress on In-situ monitoring of damage behavior of SiCf/SiC ceramic matrix composites at high temperature environments. Journal of Inorganic Materials, 2024, 39(6): 609. [23] Lü X, LI L, SUN J,et al. Microstructure and tensile behavior of (BN/SiC)n coated SiC fibers and SiC/SiC minicomposites. Journal of the European Ceramic Society, 2023, 43(5): 1828-1842. [24] ISMAIL M Y, PATANEN M, KAUPPINEN S,et al. Surface analysis of tissue paper using laser scanning confocal microscopy and micro-computed topography. Cellulose, 2020, 27(15): 8989-9003. [25] ZHANG W Y, REN Q, WAN W H, et al. High-throughput microstructure characterization of titanium alloy by a multi-dimensional information strategy. Materials Today Communications, 2024, 38: 108360. [26] RODRíGUEZ M,GONZáLEZ C,et al. An experimental and numerical study of the influence of local effects on the application of the fibre push-in test. Philosophical Magazine, 2011, 91(7-9): 1293-1307. [27] MUELLER W M, MOOSBURGER-WILL J, SAUSE M G R,et al. Microscopic analysis of single-fiber push-out tests on ceramic matrix composites performed with Berkovich and flat-end indenter and evaluation of interfacial fracture toughness. Journal of the European Ceramic Society, 2013, 33(2): 441. [28] DE MEYERE R M G, GALE L, HARRIS S,et al. Optimizing the fiber push‐out method to evaluate interfacial failure in SiC/BN/SiC ceramic matrix composites. Journal of the American Ceramic Society, 2021, 104(6): 2741-2752. [29] ZHANG S Y, LIU M, LUO Y X,et al. Theoretical prediction on structure evolution and optimal properties of silicon modified hexagonal boron nitride as interphase in SiCf/SiC composite. Journal of the European Ceramic Society, 2022, 42(13): 5323. |
| [1] | 张广珩, 石金瑜, 沈泓宇, 张洁, 王京阳. Gd3+和Yb3+对CMAS腐蚀产物结晶行为的影响及协同作用机理[J]. 无机材料学报, 2026, 41(1): 27-36. |
| [2] | 高源, 魏波, 金芳军, 吕喆, 凌意瀚. Ag掺杂调控中温固体氧化物燃料电池阴极酸性位点增强耐铬能力[J]. 无机材料学报, 2026, 41(1): 70-78. |
| [3] | 张永恒, 陈继新. 镱铝硅酸盐玻璃和SiC改性h-BN基复合材料的制备与性能研究[J]. 无机材料学报, 2026, 41(1): 37-44. |
| [4] | 袁子豪, 许银生, 李昕阔, 谭德志. 飞秒激光调控CdS量子点玻璃的发光性能[J]. 无机材料学报, 2026, 41(1): 105-112. |
| [5] | 韩伟伟, 黄东, 李廷松, 李江. 包边复合结构Sm:LuAG/Nd:LuAG激光陶瓷的制备及性能研究[J]. 无机材料学报, 2026, 41(1): 113-118. |
| [6] | 徐锦涛, 高攀, 何唯一, 蒋圣楠, 潘秀红, 汤美波, 陈锟, 刘学超. 3C-SiC晶体制备研究进展[J]. 无机材料学报, 2026, 41(1): 1-11. |
| [7] | 凌意瀚, 郭胜, 曹志强, 田云峰, 刘方升, 金芳军, 高源. 固体氧化物电池直孔电极结构的制备技术与性能研究进展[J]. 无机材料学报, 2025, 40(12): 1311-1323. |
| [8] | 王哲, 郝鸿儒, 吴宗辉, 徐玲玲, 吕喆, 魏波. 构型熵工程增强双钙钛矿型氧电极抗Cr中毒能力[J]. 无机材料学报, 2025, 40(12): 1341-1348. |
| [9] | 吴明轩, 李珺杰, 陈硕, 鄢永高, 苏贤礼, 张清杰, 唐新峰. 区熔n型Bi1.96Sb0.04Te2.70Se0.30热电材料均匀性研究[J]. 无机材料学报, 2025, 40(11): 1252-1260. |
| [10] | 张海丰, 蒋蒙, 孙婷婷, 王连军, 江莞. 稳定立方相p型GeMnTe2基热电材料制备[J]. 无机材料学报, 2025, 40(11): 1245-1251. |
| [11] | 李成明, 周闯, 刘鹏, 郑礼平, 赖泳机, 陈良贤, 刘金龙, 魏俊俊. CVD金刚石膜应力的产生、抑制、应用及测量[J]. 无机材料学报, 2025, 40(11): 1188-1200. |
| [12] | 袁龙, 贾如, 袁梦, 张健, 段羽, 孟祥东. X射线诱导光致变色材料的机理与应用[J]. 无机材料学报, 2025, 40(10): 1097-1110. |
| [13] | 艾伊昭彤, 任九龙, 强林芽, 张小珍, 杨凯, 高彦峰. 高承载下Al2O3-GdAlO3(GAP)非晶陶瓷涂层的摩擦磨损性能[J]. 无机材料学报, 2025, 40(10): 1111-1118. |
| [14] | 曹路涵, 孟佳, 薛玉冬, 盛晓晨, 崔苑苑, 乐军, 宋力昕. SiC过渡层对SiC/SiC陶瓷基复合材料表面MoSi2-SABB涂层结合性能的影响[J]. 无机材料学报, 2025, 40(10): 1119-1128. |
| [15] | 宛心怡, 王文奇, 李加诚, 赵俊亮, 马董云, 王金敏. 基于WO3·xH2O与可逆金属电沉积的无色/黑色转换电致变色器件[J]. 无机材料学报, 2025, 40(10): 1163-1174. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||