无机材料学报

• •    

xSi-BN/SiC纤维光电联用高通量表征

许嘉垅1, 秦浩2, 罗昕沂1, 邢娟娟1, 张翔宇2, 顾辉3   

  1. 1.上海大学 材料科学与工程学院,上海 200444;
    2.中国科学院 上海硅酸盐研究所, 上海 201899;
    3.北京高压科学中心,北京 100094
  • 收稿日期:2025-11-12 修回日期:2026-02-02
  • 作者简介:许嘉垅(2001–), 女, 硕士研究生. E-mail: xjlong_23@shu.edu.cn
  • 基金资助:
    国家重点研发计划(2022YFB3707700)NationalKeyR&DProgramofChina(2022YFB3707700)

High-throughput Microstructural Characterization of xSi-BN Coated SiC Fibers by Combining Scanning Electron Microscopy and Laser Scanning Confocal Microscopy

XU Jialong1, QIN Hao2, LUO Xinyi1, XING Juanjuan1, ZHANG Xiangyu2, GU Hui3   

  1. 1. School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China;
    2. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China;
    3. Center of High Pressure Science & Technology Advanced Research, Beijing 100094, China
  • Received:2025-11-12 Revised:2026-02-02
  • About author:XU Jialong (2001–), female, Master candidate. E-mail: xjlong_23@shu.edu.cn
  • Supported by:
    National Key R&D Program of China (2022YFB3707700)

摘要: BN界面相是SiCf/SiC复合材料的关键组元,优化其成分与微观结构对改善其综合性能与可靠性至关重要。本研究开发了一种基于扫描电子显微镜和激光共聚焦显微镜的智能定位光电联用高通量表征技术,能够对纤维表面同一区域实现多尺度表征,获取BN界面相的表面粗糙度、微观形貌及元素组成等关键信息。该技术通过建立统一坐标系实现快速定位,可在1 h内完成20个组分区域的多尺度分析,整体表征效率提升约1.1倍。研究表明,随着制备过程中Si前驱体的输入流量升高,xSi-BN界面相中Si含量增加,B含量相应降低。Si的引入导致BN结晶度降低,表面活性增强,促使BN吸附空气中的氧并在表面形成凸起颗粒。Si掺杂对BN层状结构及其力学性能具有显著影响。随着Si含量增至8%,与层间滑移相关的“pop-in”现象消失,界面层硬度从14.91 GPa显著降低至8.06 GPa;当Si含量达到11%时,界面剪切强度从32.76 MPa大幅提升至109.07 MPa。该技术为SiCf/SiC复合材料界面相的成分设计、结构调控与性能优化提供了有效的方法支撑。

关键词: 扫描电子显微镜, 激光共聚焦显微镜, 光电联用高通量表征, BN界面相

Abstract: BN interphase serves as a key component of SiCf/SiC composite materials. Optimizing its composition and microstructure is essential for enhancing the comprehensive performance and reliability of ceramic matrix composites. In this investigation, we developed an optoelectric combination technology by combining scanning electron microscopy and laser scanning confocal microscopy through calibration and intelligent positioning, which can characterize the same area of the fiber at multiple scales. Key information, such as the surface roughness, micromorphology, and elemental distribution of BN interphase, was obtained. By establishing a unified planar coordinate system, it increased the measurement speed by about 1.1 times, and allowed high-throughput analysis of 20 component sample areas in one hour. The research indicates that the input flow rate of Si precursor increased during preparation, the Si content in the xSi-BN interphase increased while the B content decreased. The introduction of Si leads to a decrease in the crystallinity of BN and an enhancement in its surface activity, thereby facilitating the absorption of oxygen from the air and the formation of protruding particles on the surface. Si doping significantly influences the layered structure and mechanical properties of BN. As the Si content reaches 8%, the “pop-in” phenomenon associated with interlayer sliding disappears, and the hardness of the xSi-BN interphase markedly decreases from 14.91 GPa to 8.06 GPa. At the Si content reaches 11%, the interfacial shear strength increases significantly from 32.76 MPa to 109.07 MPa. This technology provides an effective approach for the microstructural characterization of the compositional design, structural regulation, and performance optimization of the interphase in SiCf/SiC composites.

Key words: scanning electron microscopy, laser scanning confocal microscopy, optoelectric combination high-throughput characterization, BN interphase

中图分类号: