• 研究论文 •
凡胜强1,2, 周书豪1, 钱君超1, 马汝广1, 吴正颖1
收稿日期:2025-09-19
修回日期:2025-12-05
通讯作者:
马汝广,教授. E-mail: ruguangma@usts.edu.cn;吴正颖,教授. E-mail:zywu@mail.usts.edu.cn
作者简介:凡胜强 (1998-),男,硕士研究生. E-mail:fanshengqiang0127@126.com
基金资助:FAN Shengqiang1,2, ZHOU Shuhao1, QIAN Junchao1, MA Ruguang1, WU Zhengying1
Received:2025-09-19
Revised:2025-12-05
Contact:
MA Ruguang, professor. E-mail: ruguangma@usts.edu.cn; WU Zhengying, professor. E-mail: zywu@usts.edu.cn
About author:FAN Shengqiang (1998-), male, Master candidate. E-mail: fanshengqiang0127@126.com
Supported by:摘要: 太阳能驱动的界面水蒸发技术作为一种高效、可持续产生清洁水的重要方法,是材料和环境领域的研究热点之一。然而,低成本、高转换效率的光热材料是制约该技术广泛应用的关键。本研究以山茶花花瓣衍生的生物炭(CC)为载体和结构导向剂,在生物炭上均匀生长二氧化锰 (HMO),合成了结晶度低且缺陷丰富的HMO/CC复合材料。该HMO/CC在250~2500 nm光谱范围内表现出94.2%的高光吸收率和优于单一HMO的光热转化能力。HMO/CC与混合纤维素滤膜(MCE)组装成的HMO/CC-MCE光热膜,呈现出极佳的亲水性以及光热转换性能,在1 kW·m-2太阳光照射下,蒸发速率达到1.505 kg·m-2·h-1,蒸发效率为92.5%,高于HMO (85.0%) 以及CC(82.6%),为无膜纯水的9.9倍。将HMO/CC与聚氨酯(PU)海绵相结合所构建的HMO/CC-PU三维蒸发器,在1 kW·m-2太阳光照射下,600 s内温度升高至68.3 ℃,蒸发速率高达2.274 kg·m-2·h-1。同时,该蒸发器在模拟海水中循环测试15次依旧保持2.271 kg·m-2·h-1的蒸发速率。本研究以生物质衍生物炭为模板构建复合材料,为新型光热材料的开发及其在海水淡化及废水处理领域的应用提供了有益参考。
中图分类号:
凡胜强, 周书豪, 钱君超, 马汝广, 吴正颖. 二氧化锰/生物炭复合光热材料的合成及其在太阳能界面水蒸发中的性能[J]. 无机材料学报, DOI: 10.15541/jim20250365.
FAN Shengqiang, ZHOU Shuhao, QIAN Junchao, MA Ruguang, WU Zhengying. Manganese dioxide/Biocarbon Composite Photothermal Material: Synthesis and Its Performance in Solar Interface Water Evaporation[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250365.
| [1] YANG L, LI N, GUO C, et al. Marine biomass-derived composite aerogels for efficient and durable solar-driven interfacial evaporation and desalination. Chemical Engineering Journal, 2021, 417: 128051 [2] MEKONNEN M M, HOEKSTRA A Y.Four billion people facing severe water scarcity.Science Advances, 2016, 2(2): e1500323. [3] ZHOU X, LI J, LIU C, et al. Carbonized tofu as photothermal material for highly efficient solar steam generation. International Journal of Energy Research, 2020, 44(11): 9213. [4] ZHOU M, ZHANG L, TAO S, et al. Recent research advances in efficient solar-driven interfacial evaporation. Chemical Engineering Journal, 2024, 489: 151157. [5] JING X X, WU Z Y, SUN L B, et al. Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024,40(6): 1033. [6] ZHOU L, LI X Q, NI G W, et al. The revival of thermal utilization from the sun: interfacial solar vapor generation. National Science Review, 2019, 6(3): 562. [7] LI S, YANG X, HE Y, et al. Hierarchical porous aero-cryogels for wind energy enhanced solar vapor generation. Cellulose, 2022, 29(2): 953. [8] WEI W H, HARADA K, YOSHIDA M, et al. Mn-MIL-100 derived MnO2@carbon for the photo-induced thermal catalytic HCHO oxidation. Separation and Purification Technology, 2025, 360: 131129. [9] WANG R, HAO Q, FENG J, et al. Enhanced separation of photogenerated charge carriers and catalytic properties of ZnO-MnO2 composites by microwave and photothermal effect. Journal of Alloys and Compounds, 2019, 786: 418. [10] ZHENG N, CHEN C, TANG M, et al. Ultrahigh compressibility and superior elasticity carbon framework derived from shaddock peel for high-performance pressure sensing. RSC Advances, 2021, 11(46): 28621. [11] ZHANG C, XIAO P, NI F, et al. Converting pomelo peel into eco-friendly and low-consumption photothermic biomass sponge toward multifunctioal solar-to-heat conversion. ACS Sustainable Chemistry & Engineering, 2020, 8(13): 5328. [12] TIAN H, YU M, LIU X, et al. Plant-cell oriented few-layer MoS2/C as high performance anodes for lithium-ion batteries. Electrochimica Acta, 2022, 424: 140685. [13] BELLARDITA M, GARLISI C, OZER L Y, et al. Highly stable defective TiO2-x with tuned exposed facets induced by fluorine: impact of surface and bulk properties on selective UV/visible alcohol photo-oxidation. Applied Surface Science, 2020, 510: 145419. [14] MAJIDI M R, FARAHANI F S, HOSSEINI M, et al. Low-cost nanowired α-MnO2/C as an ORR catalyst in air-cathode microbial fuel cell. Bioelectrochemistry, 2019, 125: 38. [15] YANG L W, TIAN X Y, LIU Z Y, et al. Performance and mechanism of lanthanum-modified MnO for defluoridation from water: the role of Mn crystal forms. Chemical Engineering Journal, 2024, 492: 152343. [16] LIU J, WANG J, ZHAO M, et al. Engineering defective Mnδ+-OV active structure in α-MnO2 for efficient low-temperature CO oxidation. Applied Surface Science, 2024, 670: 160602. [17] WANG L, GUAN S Y, WENG Y Z W, et al. Highly efficient vacancy-driven photothermal therapy mediated by ultrathin MnO2 nanosheets. ACS Applied Materials & Interfaces, 2019, 11(6): 6267. [18] JIANG J, LAI X, FANG Y, et al. “One stone two birds” strategy for sustainable water purification: bifunctional photothermic-catalytic manganese oxide/carbon composites enabling solar evaporation, seawater desalination and periodate activation. Desalination, 2025, 597: 118402. [19] WANG G, XU H, LU L, et al. One-step synthesis of mesoporous MnO2/carbon sphere composites for asymmetric electrochemical capacitors. Journal of Materials Chemistry A, 2015, 3(3): 1127. [20] JIA J, LI L, LIAN X, et al. A mild reduction of Co-doped MnO2 to create abundant oxygen vacancies and active sites for enhanced oxygen evolution reaction. Nanoscale, 2021, 13(25): 11120. [21] SAMPATHKUMAR P, MONICA M S, GIRIBABU K, et al. Influence of phase structure of MnO2 for enhancing the electrochemical sensitivity of environmental pollutant chlortetracycline. Next Materials, 2024, 2: 100079. [22] JIANG C, GE Y, CHEN W, et al. Hierarchically-structured TiO2/MnO2 hollow spheres exhibiting the complete mineralization of phenol. Catalysts, 2019, 9(4): 390. [23] YANG W, PENG Y, WANG Y, et al. Controllable redox-induced in-situ growth of MnO2 over Mn2O3 for toluene oxidation: active heterostructure interfaces. Applied Catalysis B: Environmental, 2020, 278: 119279. [24] ZHANG Y-H, ZHANG S, HU N, et al. Oxygen vacancy chemistry in oxide cathodes. Chemical Society Reviews, 2024, 53(7): 3302. [25] MU G, XIE H, JIAN Y, et al. Facile construction and enhanced catalytic activity of Co-Mn oxide with rich amorphous/crystalline interfaces for propane oxidation. Separation and Purification Technology, 2024, 348: 127699. [26] KONG J, CHEN H, LI Z, et al. Synergistic defect engineering in β-MnO2 nanorods for energy-efficient photocatalytic air purification. Chemical Engineering Journal, 2025, 522: 167730. [27] QIU Y, LEE M, CHEN J, et al. Effect of light intensity on solar-driven interfacial steam generation. Nanoscale, 2021, 13: 20387. [28] ZHOU X, ZHAO F, GUO Y, et al. A hydrogel-based antifouling solar evaporator for highly efficient water desalination. Energy &Environmental Science, 2018, 11(8): 1985. [29] ZHOU X, GUO Y, ZHAO F, et al. Topology-controlled hydration of polymer network in hydrogels for solar-driven wastewater treatment. Advanced Materials, 2020, 32(52): 2007012. [30] YANG Y, ZHAO Y, SHI F, et al. Synergistic photothermal-bubbly driving effect on MnO2/carbon microsphere micromotors assisted by photocatalytic H2O2 decomposition. Catalysis Today, 2025, 460: 115487. [31] XU Z, ZHANG L, ZHAO L, et al. Ultrahigh-efficiency desalination via a thermally-localized multistage solar still. Energy & Environmental Science, 2020, 13(3): 830. [32] KIM H T, PHILIP L, MCDONAGH A, et al. Recent advances in high-rate solar-driven interfacial evaporation. Advanced Science, 2024, 11(26): 2401322. [33] LU F, WU S L, QUAN L N, et al. Twisting two-dimensional photothermal sponges for boosting solar steam generation. Chemical Engineering Journal, 2023, 474: 145747. |
| [1] | 张广珩, 石金瑜, 沈泓宇, 张洁, 王京阳. Gd3+和Yb3+对CMAS腐蚀产物结晶行为的影响及协同作用机理[J]. 无机材料学报, 2026, 41(1): 27-36. |
| [2] | 高源, 魏波, 金芳军, 吕喆, 凌意瀚. Ag掺杂调控中温固体氧化物燃料电池阴极酸性位点增强耐铬能力[J]. 无机材料学报, 2026, 41(1): 70-78. |
| [3] | 张永恒, 陈继新. 镱铝硅酸盐玻璃和SiC改性h-BN基复合材料的制备与性能研究[J]. 无机材料学报, 2026, 41(1): 37-44. |
| [4] | 袁子豪, 许银生, 李昕阔, 谭德志. 飞秒激光调控CdS量子点玻璃的发光性能[J]. 无机材料学报, 2026, 41(1): 105-112. |
| [5] | 韩伟伟, 黄东, 李廷松, 李江. 包边复合结构Sm:LuAG/Nd:LuAG激光陶瓷的制备及性能研究[J]. 无机材料学报, 2026, 41(1): 113-118. |
| [6] | 徐锦涛, 高攀, 何唯一, 蒋圣楠, 潘秀红, 汤美波, 陈锟, 刘学超. 3C-SiC晶体制备研究进展[J]. 无机材料学报, 2026, 41(1): 1-11. |
| [7] | 凌意瀚, 郭胜, 曹志强, 田云峰, 刘方升, 金芳军, 高源. 固体氧化物电池直孔电极结构的制备技术与性能研究进展[J]. 无机材料学报, 2025, 40(12): 1311-1323. |
| [8] | 王哲, 郝鸿儒, 吴宗辉, 徐玲玲, 吕喆, 魏波. 构型熵工程增强双钙钛矿型氧电极抗Cr中毒能力[J]. 无机材料学报, 2025, 40(12): 1341-1348. |
| [9] | 吴明轩, 李珺杰, 陈硕, 鄢永高, 苏贤礼, 张清杰, 唐新峰. 区熔n型Bi1.96Sb0.04Te2.70Se0.30热电材料均匀性研究[J]. 无机材料学报, 2025, 40(11): 1252-1260. |
| [10] | 张海丰, 蒋蒙, 孙婷婷, 王连军, 江莞. 稳定立方相p型GeMnTe2基热电材料制备[J]. 无机材料学报, 2025, 40(11): 1245-1251. |
| [11] | 李成明, 周闯, 刘鹏, 郑礼平, 赖泳机, 陈良贤, 刘金龙, 魏俊俊. CVD金刚石膜应力的产生、抑制、应用及测量[J]. 无机材料学报, 2025, 40(11): 1188-1200. |
| [12] | 袁龙, 贾如, 袁梦, 张健, 段羽, 孟祥东. X射线诱导光致变色材料的机理与应用[J]. 无机材料学报, 2025, 40(10): 1097-1110. |
| [13] | 艾伊昭彤, 任九龙, 强林芽, 张小珍, 杨凯, 高彦峰. 高承载下Al2O3-GdAlO3(GAP)非晶陶瓷涂层的摩擦磨损性能[J]. 无机材料学报, 2025, 40(10): 1111-1118. |
| [14] | 曹路涵, 孟佳, 薛玉冬, 盛晓晨, 崔苑苑, 乐军, 宋力昕. SiC过渡层对SiC/SiC陶瓷基复合材料表面MoSi2-SABB涂层结合性能的影响[J]. 无机材料学报, 2025, 40(10): 1119-1128. |
| [15] | 宛心怡, 王文奇, 李加诚, 赵俊亮, 马董云, 王金敏. 基于WO3·xH2O与可逆金属电沉积的无色/黑色转换电致变色器件[J]. 无机材料学报, 2025, 40(10): 1163-1174. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||