[1] |
WIDENER ANDREA.Materials genome initiative. Chem. Eng. News, 2013, 91(31): 25-27.
|
[2] |
RACCUGLIA PAUL, ELBERT KATHERINE C, ADLER PHILIP D F, et al. Machine-learning-assisted materials discovery using failed experiments. Nature, 2016, 533(7601): 73-75.
|
[3] |
HOCHBAUM ALLON I, CHEN RENKUN,DELGADO RAUL DIAZ, et al.Enhanced thermoelectric performance of rough silicon nanowires. Nature, 2008, 451(7175): 163-165.
|
[4] |
YOU LI, LIU YE-FENG, LI XIN, et al.Boosting the thermoelectric performance of PbSe through dynamic doping and hierarchical phonon scattering. Energy Environ. Sci., 2018, 11(7): 1848-1858.
|
[5] |
ZHU TIE-JUN, LIU YIN-TU, FU CHEN-GUANG, et al. Compromise and synergy in high-efficiency thermoelectric materials. Adv. Mater., 2017, 29(14): 1605884-1-26.
|
[6] |
PAN YU, AYDEMIR UMUT, GROVOGUI JANN A, et al. Melt-centrifuged (Bi,Sb)2Te3: engineering microstructure toward high thermoelectric efficiency. Adv. Mater., 2018, 30(34): 1802016-1-7.
|
[7] |
YU CUI, ZHU TIE-JUN, XIAO KAI, et al.Microstructure of ZrNiSn-base half-Heusler thermoelectric materials prepared by melt-spinning. [J].Inorg. Mater., 2010, 25(6): 569-572.
|
[8] |
LIU YIN-TU, FU CHEN-GUANG, XIA KAI-YANG, et al. Lanthanide contraction as a design factor for high-performance half-Heusler thermoelectric materials. Adv. Mater., 2018, 30(32): 1800881-1-7.
|
[9] |
YAO ZHENG, QIU PENG-FEI, LI XIAO-YA, et al.Investigation on quick fabrication of n-type filled Skutterudites.[J].Inorg. Mater., 2016, 31(12): 1375-1382.
|
[10] |
ZHANG JIA-WEI, LIU RUI-HENG, CHENG NIAN, et al.High- performance pseudocubic thermoelectric materials from non-cubic chalcopyrite compounds. Adv. Mater., 2014, 26(23): 3848-3853
|
[11] |
BHATT RANU, BHATTACHARYA SHOVIT, BASU RANITA, et al.Enhanced thermoelectric properties of selenium-deficient layered TiSe2-x: a charge-density-wave material. ACS Appl. Mater. Interfaces,2014,6(21): 18619-18625.
|
[12] |
ZHAO LI-DONG, DRAVID VINAYAK P, KANATZIDIS MERCOURI G.The panoscopic approach to high performance thermoelectrics. Energy Environ. Sci., 2014, 7(1): 251-268.
|
[13] |
PEI YAN-ZHONG, HEINZ NICHOLAS A, AARON LALONDE, et al.Combination of large nanostructures and complex band structure for high performance thermoelectric lead telluride. Energy Environ. Sci., 2011, 4(9): 3640-3645.
|
[14] |
YAN Y G, MARTIN J, WONG-NG W, et al. A temperature dependent screening tool for high throughput thermoelectric characterization of combinatorial films. Rev. Sci. Instrum., 2013, 84(11): 115110-1-7.
|
[15] |
XIANG XIAO-DONG, SUN XIAO-DONG, BRICEÑO GABRIEL, et al. A combinatorial approach to materials discovery. Science, 1995, 268(5218): 1738-1740.
|
[16] |
FUJIMOTO K, KATO T, ITO S, et al.Development and application of combinatorial electrostatic atomization system “M-ist Combi”: high-throughput preparation of electrode materials. Solid State Ionics, 2006, 177(26-32): 2639-2642.
|
[17] |
FUJIMOTO KENJIRO, TAGUCHI TORU, SHOGO YOSHIDA, et al.Design of Seebeck coefficient measurement probe for powder library. ACS Comb. Sci., 2014, 16(2): 66-70
|
[18] |
HEDEGAARD ELLEN M J, JOHNSEN SIMON, BJERG LASSE, et al. Functionally graded Ge1-xSix thermoelectrics by simultaneous band gap and carrier density engineering. Chem. Mater., 2014, 26(17): 4992-4997.
|
[19] |
KASAP SAFA, CAPPER PETER.Springer Handbook of Electronic and Photonic Materials. New York: Springer Science Business Media, Inc., 2006: 236.
|
[20] |
HEDEGAARD ELLEN M J, MAMAKHEL AREF A H, REARDON HAZEL, et al. Functionally graded (PbTe)1-x(SnTe)x thermoelectrics. Chem. Mater., 2018, 30(1): 280-287.
|
[21] |
KOHRI H, NISHIDA I A, SHIOTA I. Improvement of thermoelectric properties for n-type PbTe by adding Ge. Mater. Sci. Forum, 2003, 423-425: 381-384.
|
[22] |
ZHAO JI CHENG, JACKSON MELVIN R, PELUSO LOUIS A, et al.A diffusion multiple approach for the accelerated design of structural materials. MRS Bull., 2002, 27(4): 324-329.
|
[23] |
GELBSTEIN Y, DASHEVSKY Z, DARIEL M P.Powder metallurgical processing of functionally graded p-Pb1-xSnxTe materials for thermoelectric applications. Phys. B, 2007, 391(2): 256-265.
|
[24] |
HAZAN EDEN, OHAD BEN-YEHUDA, MADAR NAOR, et al. Functional graded germanium-lead chalcogenide-based thermoelectric module for renewable energy applications. Adv. Energy Mater., 2015, 5(11): 1500272-1-8.
|
[25] |
JANUSZKO KAMILA, STABRAWA ARTUR, OGATA YUDAI, et al.Influence of sedimentation of atoms on structural and thermoelectric properties of Bi-Sb alloys. [J]. Electron. Mater., 2016, 45(3): 1947-1955.
|
[26] |
ZIOLKOWSKI PAWEL, WAMBACH MATTHIAS, LUDWIG ALFRED, et al.Application of high-throughput Seebeck microprobe measurements on thermoelectric half-Heusler thin film combinatorial material libraries. ACS Comb. Sci., 2018, 20(1): 1-18.
|
[27] |
WAMBACH MATTHIAS, STERN ROBIN, BHATTACHARYA SANDIP, et al. Unraveling self-doping effects in thermoelectric TiNiSn half-Heusler compounds by combined theory and high-throughput experiments. Adv. Electron. Mater., 2016, 2(3): 1500208- 1-9.
|
[28] |
XIANG XIAO-DONG.High throughput synthesis and screening for functional materials. Appl. Surf. Sci., 2004, 223(1/3): 54-61.
|
[29] |
ZHAO JI-CHENG, ZHENG XUAN, CAHILLBDAVID G.Thermal conductivity mapping of the Ni-Al system and the beta-NiAl phase in the Ni-Al-Cr system. Scripta Mater., 2012, 66(11): 935-938.
|
[30] |
MAO SAMUELS.High throughput growth and characterization of thin film materials. J. Cryst. Growth, 2013, 379: 123-130.
|
[31] |
PERNOT GILLES, MICHEL HÉLÈNE, VERMEERSCH BJORN, et al. Frequency-dependent thermal conductivity in time domain thermoreflectance analysis of thin films. Mater. Res. Soc. Symp. Proc., 2011, 1347: DOI: 10.1557/opl.2011.1277.
|
[32] |
PADDOCK CAROLYN A, EESLEY GARY L.Transient thermoreflectance from thin metal films. [J]. Appl. Phys., 1986,60(1): 285-290.
|
[33] |
ABADA B, BORCA-TASCIUC D A, MARTIN-GONZALEZA M S. Non-contact methods for thermal properties measurement. Renew. Sust. Energ. Rev., 2017, 76: 1348-1370.
|
[34] |
MCCLUSKEY PATRICK J, VLASSAK JOOST J.Combinatorial nanocalorimetry. [J]. Mater. Res., 2010, 25(11): 2086-2100.
|
[35] |
GREGOIREJOHN M, MCCLUSKEYPATRICK J, DALEDARREN, et al. Combining combinatorial nanocalorimetry and X-ray diffraction techniques to study the effects of composition and quench rate on Au-Cu-Si metallic glasses. Scripta Mater., 2012, 66(3/4): 178-181.
|
[36] |
TRITT TERRY M.Thermal Conductivity: Theory, Properties, and Applications. New York: Kluwer Academic/Plenum Publishers, 2004: 225-231.
|
[37] |
EESLEY G L.Observation of nonequilibrium electron heating in copper. Phys. Rev. Lett., 1983, 51(23): 2140-2143.
|
[38] |
FAVALORO T, BAHK J H, SHAKOURI A. Characterization of the temperature dependence of the thermoreflectance coefficient for conductive thin films. Rev. Sci. Instrum., 2015, 86(2): 024903- 1-9.
|
[39] |
MANZANO CRISTINA V, ABAD BEGOÑA, MUÑOZ MIGUEL ROJO, et al. Anisotropic effects on the thermoelectric properties of highly oriented electrodeposited Bi2Te3 films. Sci. Rep., 2016, 6: 19129-1-8.
|
[40] |
HUXTABLE SCOTT, CAHILL DAVID G, FAUCONNIER VINCENT, et al.Thermal conductivity imaging at micrometre-scale resolution for combinatorial studies of materials. Nat. Mater., 2004, 3(5): 298-301.
|
[41] |
NISHI TSUYOSHI, YAMAMOTO SUGURU, MORI OKAWA, et al.Thermal microscope measurement of thermal effusivity distribution in compositionally graded PbTe-Sb2Te3-Ag2Te alloy system. Thermochim. Acta, 2018, 659: 39-43.
|
[42] |
WIELGOSZEWSKI GRZEGORZ, GOTSZALKA TEODOR.Scanning thermal microscopy (SThM): how to map temperature and thermal properties at the nanoscale. Adv. Imag. Electron Phys., 2015, 190: 177-221
|
[43] |
GRAUBY STÉPHANE, PUYOO ETIENNE, RAMPNOUX JEAN-MICHEL, et al.Si and SiGe nanowires: fabrication process and thermal conductivity measurement by 3ω-scanning thermal microscopy. J. Phys. Chem. C, 2013, 117(17): 9025-9034.
|
[44] |
KING WILLIAM P, KENNY THOMAS W.Design of atomic force microscope cantilevers for combined thermomechanical writing and thermal reading in array operation. J. Microelectromech. S., 2002, 11(6): 765-774.
|
[45] |
ESFAHANI EHSAN NASR, MA FEI-YUE, WANG SHAN-YU,et al.Quantitative nanoscale mapping of three-phase thermal conductivities in filled skutterudites via scanning thermal microscopy. Natl. Sci. Rev., 2018, 5(1): 59-69.
|
[46] |
ANDRES PEREZ-TABORDA J, CABALLERO-CALERO O, VERA-LONDONO L, et al. High thermoelectric zT in n-type silver selenide films at room temperature. Adv. Energy Mater., 2018, 8(8): 1870033-1-8.
|
[47] |
MARHOUN FERHAT, JIRO NAGAO.Thermoelectric and transport properties of β-Ag2Se compounds. [J]. Appl. Phys., 2000, 88(2): 813-816.
|
[48] |
WU K H, HUNG C I, ZIOLKOWSKI P, et al. Improvement of spatial resolution for local Seebeck coefficient measurements by deconvolution algorithm. Rev. Sci. Instrum., 2009, 80(10): 105104-1-8.
|
[49] |
ZHOU AI-JUN, WANG WEI-HANG, YAO XU, et al.Impact of the film thickness and substrate on the thermopower measurement of thermoelectric films by the potential-Seebeck microprobe (PSM). Appl. Therm. Eng., 2016, 107: 552-559.
|
[50] |
MI JIAN-LI, BREMHOLM MARTIN, BIANCHI MARCO, et al.Phase separation and bulk p-n transition in single crystals of Bi2Te2Se topological insulator. Adv. Mater., 2013, 25(6): 889-893.
|
[51] |
DE BOOR J, STIEWEP C,ZIOLKOWSKI P, et al.High-temperature measurement of Seebeck coefficient and electrical conductivity. [J]. Electron. Mater., 2013, 42(7): 1711-1718.
|
[52] |
XU K Q, ZENG H R, YU H Z, et al.Ultrahigh resolution characterizing nanoscale Seebeck coefficient via the heated, conductive AFM probe. Appl. Phys. A, 2015, 118(1): 57-61.
|