Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (3): 236-246.DOI: 10.15541/jim20180321
Special Issue: 热电材料与器件
Previous Articles Next Articles
LI Xin, XI Li-Li, YANG Jiong
Received:
2018-07-16
Revised:
2018-10-02
Published:
2019-03-20
Online:
2019-02-26
Supported by:
CLC Number:
LI Xin, XI Li-Li, YANG Jiong. First Principles High-throughput Research on Thermoelectric Materials: a Review[J]. Journal of Inorganic Materials, 2019, 34(3): 236-246.
Fig. 8 Three prediction models of the κL in half-Heusler compounds[16](a) Frequency densities of the estimators of thermal conductivity at 300 Kκtransfand κforest;and (b) distribution of κanhover the 75 thermodynamically stable half-Heuslers
[1] | SEEBECK T J. On the magnetic polarization of metals and minerals by temperature differences. Annals of Physics, 1826, 82(3): 253-286. |
[2] | PELTIER J C A. New experiments on the heat effects of electric currents. Annals of Chemistry and Physics, 1834, 56: 371-386. |
[3] | ZHANG Q, LIAO J, TANG Y, et al.Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration. Energy & Environmental Science, 2017, 10(4): 956-963. |
[4] | BULMAN G E, SIIVOLA E, SHEN B, et al.Large external delta t and cooling power densities in thin-film Bi2Te3-superlattice thermoelectric cooling devices. Applied Physics Letters, 2006, 89(12): 122117-1-3. |
[5] | SHAKOURI A, ZHANG Y.On-chip solid-state cooling for integrated circuits using thin-film microrefrigerators. IEEE Transactions on Components and Packaging Technologies, 2005, 28(1): 65-69. |
[6] | WANG W, JIA F, HUANG Q, et al.A new type of low power thermoelectric micro-generator fabricated by nanowire array thermoelectric material. Microelectronic Engineering, 2005, 77(3/4): 223-229. |
[7] | LI JING-FENG.Macrofabrication technology of three-dimensional microdevices and their MEMS applications. Journal of Inorganic Materials,2002, 17(4):657-664. |
[8] | HAUTIE G, JAIN A, CHEN H, et al.Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations. Journal of Materials Chemistry, 2011, 21(43): 17147-17153. |
[9] | DE JONG M, CHEN W, ANGSTEN T, et al.Charting the complete elastic properties of inorganic crystalline compounds. Sci. Data, 2015, 2: 150009-1-13. |
[10] | TAYLOR R H, CURTAROLO S, HART G L W. Guiding the experimental discovery of magnesium alloys. Physical Review B, 2011, 84(8): 084101-1-17. |
[11] | HAUTIER G, FISCHER C, EHRLACHER V, et al.Data mined ionic substitutions for the discovery of new compounds. Inorg. Chem., 2011, 50(2): 656-663. |
[12] | CHEN W, POHLS JAN-HENDRIK, HAUTIER G, et al.Understanding thermoelectric properties from high-throughput calculations: trends, insights, and comparisons with experiment. Journal of Materials Chemistry C, 2016, 4(20): 4414-4426. |
[13] | TOHER C, PLATA J J, LEVY O, et al. High-throughput computational screening of thermal conductivity, debye temperature,gruneisen parameter using a quasiharmonic debye model. Physical Review B, 2014, 90(17): 174107-1-14. |
[14] | BLANCO M, FRANCISCO E, LUANA V.Gibbs: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic debye model. Computer Physics Communications, 2004, 158(1): 57-72. |
[15] | WANG S, WANG Z, SETYAWAN W, et al.Assessing the thermoelectric properties of sintered compounds via high-throughput ab-initio calculations. Physical Review X, 2011, 1(2): 021012-1-8. |
[16] | CARRETE J, LI W, MINGO N, et al.Finding unprecedentedly low-thermal-conductivity half-Heusler semiconductors via high-throughput materials modeling. Physical Review X, 2014, 4(1): 011019-1-9. |
[17] | GOLDSMID H, DOUGLAS R.The use of semiconductors in thermoelectric refrigeration. British Journal of Applied Physics, 1954, 5(11): 386-390. |
[18] | CHASMAR R, STRATTON R.The thermoelectric figure of merit and its relation to thermoelectric generators. International Journal of Electronics, 1959, 7(1): 52-72. |
[19] | SLACK G A.Nonmetallic crystals with high thermal conductivity. Journal of Physics & Chemistry of Solids, 1973, 34(2): 321-335. |
[20] | XI L, PAN S, LI X, et al.Discovery of high performance thermoelectric chalcogenides through reliable high throughput material screening. Journal of the American Chemical Society, 2018, 140(34): 10785-10793. |
[21] | YANG J, XI L, QIU W, et al.On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory-experiment perspective. npj Computational Materials, 2016, 2:15015-1-17. |
[22] | GIBBS Z M, RICCI F, LI G, et al.Effective mass and Fermi surface complexity factor from ab initio band structure calculations. npj Computational Materials, 2017, 3(1): 8-1-7. |
[23] | CHEN LI-DONG, XIONG ZHEN, BAI SHENG-QIANG.Recent progress of thermoelectric nano-composites. Journal of Inorganic Materials,2010, 25(6):561-568. |
[24] | YAN J, GORAI P, ORTIZ B, et al.Material descriptors for predicting thermoelectric performance. Energy & Environmental Science, 2015, 8(3): 983-994. |
[25] | ANDERSON ORSON L.A simplified method for calculating the debye temperature from elastic constants. Journal of Physics and Chemistry of Solids, 1963, 24(7): 909-917. |
[26] | HILL RICHARD.The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society. Section A, 1952,65(5): 349-354. |
[27] | JIA T, CHEN G, ZHANG Y. Lattice thermal conductivity evaluated using elastic properties. Physical Review B, 2017, 95(15): 155206- 1-6. |
[28] | CLARKE D R.Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surface and Coatings Technology, 2003, 163: 67-74. |
[29] | CAHILL D G, POHL R.Lattice vibrations and heat transport in crystals and glasses. Annual Review of Physical Chemistry, 1988, 39(1): 93-121. |
[30] | CAHILL D G, BRAUN P V, CHEN G, et al.Nanoscale thermal transport. II.2003-2012. Applied Physics Reviews, 2014, 1(1): 011305-1-45. |
[31] | HAUKE J, KOSSOWSKI T.Comparison of values of Pearson's and Spearman's correlation coefficients on the same sets of data. Quaestiones Geographicae, 2011, 30(2): 87-93. |
[32] | YANG J, LI H, WU T, et al.Evaluation of half-Heusler compounds as thermoelectric materials based on the calculated electrical transport properties. Advanced Functional Materials, 2008, 18(19):2880-2888. |
[33] | YING P, LI X, WANG Y, et al.Hierarchical chemical bonds contributing to the intrinsically low thermal conductivity in α- MgAgSb thermoelectric materials. Advanced Functional Materials, 2017, 27(1): 1604145-1-8. |
[34] | LI W, LIN S, GE B, et al.Low sound velocity contributing to the high thermoelectric performance of Ag8SnSe6. Advanced Science, 2016, 3(11): 1600196-1-7. |
[35] | RICCI F, CHEN W, AYDEMIR U, et al.An ab initio electronic transport database for inorganic materials. Sci. Data, 2017, 4:170085-1-13. |
[36] | ZHU H, HAUTIER G, AYDEMIR U, et al.Computational and experimental investigation of TmAgTe2 and XYZ2 compounds, a new group of thermoelectric materials identified by first-principles high-throughput screening. Journal of Materials Chemistry C, 2015, 3(40): 10554-10565. |
[37] | AYDEMIR U, P HLS J, ZHU H, et al.YCuTe2: a member of a new class of thermoelectric materials with cute4-based layered structure. Journal of Materials Chemistry A, 2016, 4(7): 2461-2472. |
[38] | BERA C, SOULIER M, NAVONE C, et al.Thermoelectric properties of nanostructured Si1-xGex and potential for further improvement. Journal of Applied Physics, 2010, 108(12): 124306-1-8. |
[39] | ZIOLKOWSKI P, WAMBACH M, LUDWIG A, et al.Application of high-throughput seebeck microprobe measurements on thermoelectric half-Heusler thin film combinatorial material libraries. ACS Combinatorial Science, 2018, 20(1): 1-18. |
[40] | CARRETE J, MINGO N, WANG S D, et al.Nanograined half-heusler semiconductors as advanced thermoelectrics: an ab initio high-throughput statistical study. Advanced Functional Materials, 2014, 24(47): 7427-7432. |
[41] | LIAW A, WIENER M.Classification and regression by randomforest. R News, 2002, 23(23): 18-22. |
[42] | JOLLIFFE I T.Principal component analysis. Berlin, Heidelberg: Springer, 2011: 1094-1096. |
[43] | KRESSE G, FURTHMULLER J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996, 54(16): 11169-11186. |
[44] | ONG S P, CHOLIA S, JAIN A, et al.The materials application programming interface (API): a simple, flexible and efficient API for materials data based on representational state transfer (rest) principles. Computational Materials Science, 2015, 97: 209-215. |
[45] | ONG S P, RICHARDS W D, JAIN A, et al.Python materials genomics (pymatgen): a robust, open-source python library for materials analysis. Computational Materials Science, 2013, 68: 314-319. |
[46] | JAIN A, ONG S P, HAUTIER G, et al.The materials project: a materials genome approach to accelerating materials innovation. APL Materials, 2013, 1(1): 011002-1-11. |
[47] | ZHOU F, COCOCCIONI M, MARIANETTI C A, et al.First-principles prediction of redox potentials in transition-metal compounds with LDA + U. Physical Review B, 2004, 70(23): 235021- 1-8. |
[48] | WANG L, MAXISCH T, CEDER G.A first-principles approach to studying the thermal stability of oxide cathode materials. Chemistry of Materials, 2007, 19(3): 543-552. |
[49] | ONG S P, JAIN A, HAUTIER G, et al.Thermal stabilities of delithiated olivine MPO4 (M = Fe, Mn) cathodes investigated using first principles calculations. Electrochemistry Communications, 2010, 12(3): 427-430. |
[50] | ADAMS S, RAO R P.High power lithium ion battery materials by computational design. Physica Status Solidi a-Applications and Materials Science, 2011, 208(8): 1746-1753. |
[51] | GIANNOZZI P, BARONI S, BONINI N, et al.Quantum espresso: a modular and open-source software project for quantum simulations of materials. Journal of Physics-Condensed Matter, 2009, 21(39): 395502-1-19. |
[52] | ISAYEV O, OSES C, TOHER C, et al.Universal fragment descriptors for predicting properties of inorganic crystals. Nat. Commun., 2017, 8: 15679-1-12. |
[53] | SUPKA A R, LYONS T E, LIYANAGE L, et al.AFLOWπ: a minimalist approach to high-throughput ab initio calculations including the generation of tight-binding hamiltonians. Computational Materials Science, 2017, 136: 76-84. |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[3] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[4] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[5] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[6] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[7] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[8] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[9] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[10] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
[11] | ZHANG Xinghong, WANG Yiming, CHENG Yuan, DONG Shun, HU Ping. Research Progress on Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(6): 571-590. |
[12] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[13] | LI Zongxiao, HU Lingxiang, WANG Jingrui, ZHUGE Fei. Oxide Neuron Devices and Their Applications in Artificial Neural Networks [J]. Journal of Inorganic Materials, 2024, 39(4): 345-358. |
[14] | BAO Ke, LI Xijun. Chemical Vapor Deposition of Vanadium Dioxide for Thermochromic Smart Window Applications [J]. Journal of Inorganic Materials, 2024, 39(3): 233-258. |
[15] | CHEN Mengjie, WANG Qianqian, WU Chengtie, HUANG Jian. Predicting the Degradability of Bioceramics through a DFT-based Descriptor [J]. Journal of Inorganic Materials, 2024, 39(10): 1175-1181. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||