Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (3): 236-246.DOI: 10.15541/jim20180321
Special Issue: 热电材料与器件
Previous Articles Next Articles
LI Xin, XI Li-Li, YANG Jiong
Received:
2018-07-16
Revised:
2018-10-02
Published:
2019-03-20
Online:
2019-02-26
Supported by:
CLC Number:
LI Xin, XI Li-Li, YANG Jiong. First Principles High-throughput Research on Thermoelectric Materials: a Review[J]. Journal of Inorganic Materials, 2019, 34(3): 236-246.
Fig. 8 Three prediction models of the κL in half-Heusler compounds[16](a) Frequency densities of the estimators of thermal conductivity at 300 Kκtransfand κforest;and (b) distribution of κanhover the 75 thermodynamically stable half-Heuslers
[1] | SEEBECK T J. On the magnetic polarization of metals and minerals by temperature differences. Annals of Physics, 1826, 82(3): 253-286. |
[2] | PELTIER J C A. New experiments on the heat effects of electric currents. Annals of Chemistry and Physics, 1834, 56: 371-386. |
[3] | ZHANG Q, LIAO J, TANG Y, et al.Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration. Energy & Environmental Science, 2017, 10(4): 956-963. |
[4] | BULMAN G E, SIIVOLA E, SHEN B, et al.Large external delta t and cooling power densities in thin-film Bi2Te3-superlattice thermoelectric cooling devices. Applied Physics Letters, 2006, 89(12): 122117-1-3. |
[5] | SHAKOURI A, ZHANG Y.On-chip solid-state cooling for integrated circuits using thin-film microrefrigerators. IEEE Transactions on Components and Packaging Technologies, 2005, 28(1): 65-69. |
[6] | WANG W, JIA F, HUANG Q, et al.A new type of low power thermoelectric micro-generator fabricated by nanowire array thermoelectric material. Microelectronic Engineering, 2005, 77(3/4): 223-229. |
[7] | LI JING-FENG.Macrofabrication technology of three-dimensional microdevices and their MEMS applications. Journal of Inorganic Materials,2002, 17(4):657-664. |
[8] | HAUTIE G, JAIN A, CHEN H, et al.Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations. Journal of Materials Chemistry, 2011, 21(43): 17147-17153. |
[9] | DE JONG M, CHEN W, ANGSTEN T, et al.Charting the complete elastic properties of inorganic crystalline compounds. Sci. Data, 2015, 2: 150009-1-13. |
[10] | TAYLOR R H, CURTAROLO S, HART G L W. Guiding the experimental discovery of magnesium alloys. Physical Review B, 2011, 84(8): 084101-1-17. |
[11] | HAUTIER G, FISCHER C, EHRLACHER V, et al.Data mined ionic substitutions for the discovery of new compounds. Inorg. Chem., 2011, 50(2): 656-663. |
[12] | CHEN W, POHLS JAN-HENDRIK, HAUTIER G, et al.Understanding thermoelectric properties from high-throughput calculations: trends, insights, and comparisons with experiment. Journal of Materials Chemistry C, 2016, 4(20): 4414-4426. |
[13] | TOHER C, PLATA J J, LEVY O, et al. High-throughput computational screening of thermal conductivity, debye temperature,gruneisen parameter using a quasiharmonic debye model. Physical Review B, 2014, 90(17): 174107-1-14. |
[14] | BLANCO M, FRANCISCO E, LUANA V.Gibbs: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic debye model. Computer Physics Communications, 2004, 158(1): 57-72. |
[15] | WANG S, WANG Z, SETYAWAN W, et al.Assessing the thermoelectric properties of sintered compounds via high-throughput ab-initio calculations. Physical Review X, 2011, 1(2): 021012-1-8. |
[16] | CARRETE J, LI W, MINGO N, et al.Finding unprecedentedly low-thermal-conductivity half-Heusler semiconductors via high-throughput materials modeling. Physical Review X, 2014, 4(1): 011019-1-9. |
[17] | GOLDSMID H, DOUGLAS R.The use of semiconductors in thermoelectric refrigeration. British Journal of Applied Physics, 1954, 5(11): 386-390. |
[18] | CHASMAR R, STRATTON R.The thermoelectric figure of merit and its relation to thermoelectric generators. International Journal of Electronics, 1959, 7(1): 52-72. |
[19] | SLACK G A.Nonmetallic crystals with high thermal conductivity. Journal of Physics & Chemistry of Solids, 1973, 34(2): 321-335. |
[20] | XI L, PAN S, LI X, et al.Discovery of high performance thermoelectric chalcogenides through reliable high throughput material screening. Journal of the American Chemical Society, 2018, 140(34): 10785-10793. |
[21] | YANG J, XI L, QIU W, et al.On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory-experiment perspective. npj Computational Materials, 2016, 2:15015-1-17. |
[22] | GIBBS Z M, RICCI F, LI G, et al.Effective mass and Fermi surface complexity factor from ab initio band structure calculations. npj Computational Materials, 2017, 3(1): 8-1-7. |
[23] | CHEN LI-DONG, XIONG ZHEN, BAI SHENG-QIANG.Recent progress of thermoelectric nano-composites. Journal of Inorganic Materials,2010, 25(6):561-568. |
[24] | YAN J, GORAI P, ORTIZ B, et al.Material descriptors for predicting thermoelectric performance. Energy & Environmental Science, 2015, 8(3): 983-994. |
[25] | ANDERSON ORSON L.A simplified method for calculating the debye temperature from elastic constants. Journal of Physics and Chemistry of Solids, 1963, 24(7): 909-917. |
[26] | HILL RICHARD.The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society. Section A, 1952,65(5): 349-354. |
[27] | JIA T, CHEN G, ZHANG Y. Lattice thermal conductivity evaluated using elastic properties. Physical Review B, 2017, 95(15): 155206- 1-6. |
[28] | CLARKE D R.Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surface and Coatings Technology, 2003, 163: 67-74. |
[29] | CAHILL D G, POHL R.Lattice vibrations and heat transport in crystals and glasses. Annual Review of Physical Chemistry, 1988, 39(1): 93-121. |
[30] | CAHILL D G, BRAUN P V, CHEN G, et al.Nanoscale thermal transport. II.2003-2012. Applied Physics Reviews, 2014, 1(1): 011305-1-45. |
[31] | HAUKE J, KOSSOWSKI T.Comparison of values of Pearson's and Spearman's correlation coefficients on the same sets of data. Quaestiones Geographicae, 2011, 30(2): 87-93. |
[32] | YANG J, LI H, WU T, et al.Evaluation of half-Heusler compounds as thermoelectric materials based on the calculated electrical transport properties. Advanced Functional Materials, 2008, 18(19):2880-2888. |
[33] | YING P, LI X, WANG Y, et al.Hierarchical chemical bonds contributing to the intrinsically low thermal conductivity in α- MgAgSb thermoelectric materials. Advanced Functional Materials, 2017, 27(1): 1604145-1-8. |
[34] | LI W, LIN S, GE B, et al.Low sound velocity contributing to the high thermoelectric performance of Ag8SnSe6. Advanced Science, 2016, 3(11): 1600196-1-7. |
[35] | RICCI F, CHEN W, AYDEMIR U, et al.An ab initio electronic transport database for inorganic materials. Sci. Data, 2017, 4:170085-1-13. |
[36] | ZHU H, HAUTIER G, AYDEMIR U, et al.Computational and experimental investigation of TmAgTe2 and XYZ2 compounds, a new group of thermoelectric materials identified by first-principles high-throughput screening. Journal of Materials Chemistry C, 2015, 3(40): 10554-10565. |
[37] | AYDEMIR U, P HLS J, ZHU H, et al.YCuTe2: a member of a new class of thermoelectric materials with cute4-based layered structure. Journal of Materials Chemistry A, 2016, 4(7): 2461-2472. |
[38] | BERA C, SOULIER M, NAVONE C, et al.Thermoelectric properties of nanostructured Si1-xGex and potential for further improvement. Journal of Applied Physics, 2010, 108(12): 124306-1-8. |
[39] | ZIOLKOWSKI P, WAMBACH M, LUDWIG A, et al.Application of high-throughput seebeck microprobe measurements on thermoelectric half-Heusler thin film combinatorial material libraries. ACS Combinatorial Science, 2018, 20(1): 1-18. |
[40] | CARRETE J, MINGO N, WANG S D, et al.Nanograined half-heusler semiconductors as advanced thermoelectrics: an ab initio high-throughput statistical study. Advanced Functional Materials, 2014, 24(47): 7427-7432. |
[41] | LIAW A, WIENER M.Classification and regression by randomforest. R News, 2002, 23(23): 18-22. |
[42] | JOLLIFFE I T.Principal component analysis. Berlin, Heidelberg: Springer, 2011: 1094-1096. |
[43] | KRESSE G, FURTHMULLER J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996, 54(16): 11169-11186. |
[44] | ONG S P, CHOLIA S, JAIN A, et al.The materials application programming interface (API): a simple, flexible and efficient API for materials data based on representational state transfer (rest) principles. Computational Materials Science, 2015, 97: 209-215. |
[45] | ONG S P, RICHARDS W D, JAIN A, et al.Python materials genomics (pymatgen): a robust, open-source python library for materials analysis. Computational Materials Science, 2013, 68: 314-319. |
[46] | JAIN A, ONG S P, HAUTIER G, et al.The materials project: a materials genome approach to accelerating materials innovation. APL Materials, 2013, 1(1): 011002-1-11. |
[47] | ZHOU F, COCOCCIONI M, MARIANETTI C A, et al.First-principles prediction of redox potentials in transition-metal compounds with LDA + U. Physical Review B, 2004, 70(23): 235021- 1-8. |
[48] | WANG L, MAXISCH T, CEDER G.A first-principles approach to studying the thermal stability of oxide cathode materials. Chemistry of Materials, 2007, 19(3): 543-552. |
[49] | ONG S P, JAIN A, HAUTIER G, et al.Thermal stabilities of delithiated olivine MPO4 (M = Fe, Mn) cathodes investigated using first principles calculations. Electrochemistry Communications, 2010, 12(3): 427-430. |
[50] | ADAMS S, RAO R P.High power lithium ion battery materials by computational design. Physica Status Solidi a-Applications and Materials Science, 2011, 208(8): 1746-1753. |
[51] | GIANNOZZI P, BARONI S, BONINI N, et al.Quantum espresso: a modular and open-source software project for quantum simulations of materials. Journal of Physics-Condensed Matter, 2009, 21(39): 395502-1-19. |
[52] | ISAYEV O, OSES C, TOHER C, et al.Universal fragment descriptors for predicting properties of inorganic crystals. Nat. Commun., 2017, 8: 15679-1-12. |
[53] | SUPKA A R, LYONS T E, LIYANAGE L, et al.AFLOWπ: a minimalist approach to high-throughput ab initio calculations including the generation of tight-binding hamiltonians. Computational Materials Science, 2017, 136: 76-84. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||