Journal of Inorganic Materials
Previous Articles Next Articles
DENG Hengyang1, QIN Cuijie1, HAO Shenglan1, FENG Guangdi1,2, ZHU Qiuxiang1, TIAN Bobo1,2, CHU Junhao1, DUAN Chungang1,3
Received:
2025-02-22
Revised:
2025-03-14
Contact:
ZHU Qiuxiang, associate professor. E-mail: 51254700083@stu.ecnu.edu.cn;Tian Bobo, professor. E-mail: bbtian@ee.ecnu.edu.cn
About author:
DENG Hengyang (1999-), male, Master candidate. E-mail: 51254700083@stu.ecnu.edu.cn
Supported by:
CLC Number:
DENG Hengyang, QIN Cuijie, HAO Shenglan, FENG Guangdi, ZHU Qiuxiang, TIAN Bobo, CHU Junhao, DUAN Chungang. A Rectifier Bridge Circuit Based on Metal-semiconductor-metal Fin Tunneling Diode for High-frequency Application[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250076.
[1] KHAN A A, JAYASWAL G, GAHAFFAR F A, et al. Metal-insulator-metal diodes with sub-nanometre surface roughness for energy-harvesting applications. Microelectron. Eng., 2017, 181: 34. [2] DRAGOMAN M, ALDRIGO M.Graphene rectenna for efficient energy harvesting at terahertz frequencies.Appl. Phys. Lett., 2016, 109(11): 113105 [3] OLLER D, OSGOOD R, XU J, et al. Optical rectification in a reconfigurable resistive switching filament. Appl. Phys. Lett., 2019, 115(4): 043101. [4] WEERAKKODY A, BELKADI A, MODDEL G.Nonstoichiometric nanolayered Ni/NiO/Al2O3/CrAu metal-insulator-metal infrared rectenna.ACS Appl. Nano Mater., 2021, 4(3): 2470. [5] BELKADI A, WEERAKKODY A, MODDEL G.Demonstration of resonant tunneling effects in metal-double-insulator-metal (MI(2)M) diodes.Nat. Commun., 2021, 12: 2925. [6] SHAYGAN M, WANG Z, ELSAYED M S,et al. High performance metal-insulator-graphene diodes for radio frequency power detection application. Nanoscale, 2017, 9(33): 11944. [7] SANCHEZ A, DAVIS C F, LIU K C,et al. The MOM tunneling diode: Theoretical estimate of its performance at microwave and infrared frequencies. J. Appl. Phys., 1978, 49(10): 5270. [8] NISHIDA Y, NISHIGAMI N, DIEBOLD S,et al. Terahertz coherent receiver using a single resonant tunnelling diode. Sci. Rep., 2019, 9: 18125. [9] MITROVIC I Z, ALMALKI S, TEKIN S B,et al. Oxides for rectenna technology. Materials (Basel), 2021, 14(18): 5218. [10] ALSHEHRI A H, MISTRY K, NGUYEN V H,et al. Quantum-tunneling metal-insulator-metal diodes made by rapid atmospheric pressure chemical vapor deposition. Adv. Funct. Mater., 2018, 29(7): 1805533. [11] ANDERSON E C, BOUGHER T L, COLA B A.High performance multiwall carbon nanotube-insulator-metal tunnel diode arrays for optical rectification.Adv. Electron. Mater., 2018, 4(3): 1700446. [12] ALSHEHRI A H, SHAHIN A, MISTRY K,et al. Metal-insulator-insulator-metal diodes with responsivities greater than 30 A·W-1 based on nitrogen-doped TiOx and AlOx insulator layers. Adv. Electron. Mater., 2021, 7(11): 2100467. [13] ALIMARDANI N, CONLEY J F.Enhancing metal-insulator-insulator-metal tunnel diodesvia defect enhanced direct tunneling. Appl. Phys. Lett., 2014, 105(8): 082902. [14] SHRIWASTAVA S, TRIPATHI C C.Metal-insulator-metal diodes: a potential high frequency rectifier for rectenna application.J. Electron. Mater., 2019, 48(5): 2635. [15] ZHANG X, GRAJAL J, VAZQUEZ-ROY J L,et al. Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting. Nature, 2019, 566(7744): 368. [16] HOLDEN K E K, QI Y, CONLEY J F. Precision defect engineering of metal/insulator/metal diodes using atomic layer deposition to localize Ni impurities in Al2O3 tunnel barriers.J. Appl. Phys., 2021, 129(14): 144502. [17] SINGH A, RATNADURAI R, KUMAR R,et al. Fabrication and current-voltage characteristics of NiOx/ZnO based MIIM tunnel diode. Appl. Surf. Sci., 2015, 334: 197. [18] RATNADURAI R, KRISHNAN S, STEFANAKOS E, et al.Nanomanufacturability of Thin Film MIM Diodes. In: AIP Conference Proceedings. vol. 1313: American Institute of Physics; 2010: 403-405. [19] PERIASAMY P, BERRY J J, DAMERON A A,et al. Fabrication and characterization of MIM diodes based on Nb/Nb2O5 via a rapid screening technique. Adv. Mater., 2011, 23(27): 3080. [20] PERIASAMY P, GUTHREY H L, ABDULAGATOV A I,et al. Metal-insulator-metal diodes: role of the insulator layer on the rectification performance. Adv. Mater., 2013, 25(9): 1301. [21] MISTRY K, YAVUZ M, MUSSELMAN K P.Simulated electron affinity tuning in metal-insulator-metal (MIM) diodes.J. Appl. Phys., 2017, 121(18): 184504. [22] OZYIGIT D, ULLAH F, GULSARAN A,et al. Manufacturing of quantum-tunneling MIM nanodiodes via rapid atmospheric CVD in terahertz band. Sci. Rep., 2023, 13: 20733. [23] WARD D R, HUSER F, PAULY F,et al. Optical rectification and field enhancement in a plasmonic nanogap. Nat. Nanotechnol., 2010, 5(10): 732. [24] LIU Z, ABE S, SHIMIZU M,et al. Enhanced current density and asymmetry of metal-insulator-metal diodes based on self-assembly of Pt nanoparticles. Appl. Phys. Lett., 2023, 122(9): 093502 [25] HERNER S B, WEERAKKODY A D, BELKADI A,et al. High performance MIIM diode based on cobalt oxide/titanium oxide. Appl. Phys. Lett., 2017, 110(22): 223901. [26] MITROVIC I Z, WEERAKKODY A D, SEDGHI N,et al. Controlled modification of resonant tunneling in metal-insulator-insulator-metal structures. Appl. Phys. Lett., 2018, 112(1): 012902. [27] ALSHEHRI A H, ASGARIMOGHADDAM H, DELUMEAU L V,et al. Combinatorial optimization of metal-insulator-insulator-metal (MIIM) diodes with thickness-gradient films via spatial atomic layer deposition. Adv. Electron. Mater., 2024, 10(11): 2400093. [28] FENG G, ZHU Q, LIU X,et al. A ferroelectric fin diode for robust non-volatile memory. Nat. Commun., 2024, 15: 513. [29] LIU X, FENG G, FENG X, et al. Ultrahigh rectification ratio in an asymmetric metal/semiconductor/metal nanoscale tunneling junction: implications for high-frequency rectifiers. ACS Appl. Nano Mater., 2023, 6(4): 2491. [30] LIU H, ZHANG L, LEBEGUE S,et al. Morphology-electronic effects in ultra-model nanocatalysts under the CO oxidation reaction: the case of ZnO ultrathin films grown on Pt(111). Nanoscale, 2024, 16(43): 20216. [31] CHEN T, YU K, HU H,et al. Engineering electron transport layer with ionic liquid for high-performance quantum dot light-emitting diodes. ACS Appl. Nano Mater., 2025, 8(9): 4573. [32] SHINDE P, HASE Y, DOIPHODE V,et al. Morphology-dependent ZnO/MoS2 heterostructures for enhanced photoelectrochemical water splitting. ACS Appl. Energy Mater., 2025, 8(2): 935. [33] ALIMARDANI N, KING S W, FRENCH B L, et al. Investigation of the impact of insulator material on the performance of dissimilar electrode metal-insulator-metal diodes. J. Appl. Phys., 2014, 116(2): 024508. [34] CONG X, ZHENG Y, HUANG F,et al. Efficiently band-tailored type-III van der Waals heterostructure for tunnel diodes and optoelectronic devices. Nano Research, 2022, 15(9): 8442. [35] LEE G-H, YU Y-J, LEE C,et al. Electron tunneling through atomically flat and ultrathin hexagonal boron nitride. Appl. Phys. Lett., 2011, 99(24): 243114 [36] MA Q, ANDERSEN T I, NAIR N L,et al. Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure. Nat. Phys., 2016, 12(5): 455. [37] VU Q A, LEE J H, NGUYEN V L, et al. Tuning carrier tunneling in van der waals heterostructures for ultrahigh detectivity. Nano Lett., 2017, 17(1): 453. [38] TEKIN S B, ALMALKI S, FINCH H,et al. Electron affinity of metal oxide thin films of TiO2, ZnO, and NiO and their applicability in 28.3 THz rectenna devices. J. Appl. Phys., 2023, 134(8): 084503. [39] FOWLER R H, NORDHEIM L.Electron emission in intense electric fields.Proc. Roy. Soc. A, 1928, 119(791): 173. [40] YU S, GUAN X, WONG H S P. Conduction mechanism of TiN/HfOx/Pt resistive switching memory: a trap-assisted-tunneling model.Appl. Phys. Lett., 2011, 99(6): 063507 [41] CHANG W J, HOUNG M P, WANG Y H.Electrical properties and modeling of ultrathin impurity-doped silicon dioxides.J. Appl. Phys., 2001, 90(10): 5171. [42] TSIARAPAS C, GIRGINOUDI D, DIMITRIADIS E I,et al. Investigation on deep level defects in polycrystalline ZnO thin films. J. Vac. Sci. Tech. B, 2017, 35(3): 031203. |
[1] | WANG Xiaobo, ZHU Yuliang, XUE Wenchao, SHI Ruchuan, LUO Bofeng, LUO Chengtao. Effect of PbTiO3 Content Variation on High-power Performance of PMN-PT Single Crystal [J]. Journal of Inorganic Materials, 2025, 40(7): 840-846. |
[2] | TANG Xinli, DING Ziyou, CHEN Junrui, ZHAO Gang, HAN Yingchao. In vivo Distribution and Metabolism of Calcium Phosphate Nanomaterials Based on Fluorescent Labeling with Rare Earth Europium Ions [J]. Journal of Inorganic Materials, 2025, 40(7): 754-764. |
[3] | YU Leyangyang, ZHAO Fangxia, ZHANG Shuxin, XU Yixiang, NIU Yaran, ZHANG Zhenzhong, ZHENG Xuebin. Preparation of High-entropy Boride Powders for Plasma Spraying by Inductive Plasma Spheroidization [J]. Journal of Inorganic Materials, 2025, 40(7): 808-816. |
[4] | YANG Guang, ZHANG Nan, CHEN Shujin, WANG Yi, XIE An, YAN Yujie. WO3 Films Based on Porous ITO Electrodes: Preparation and Electrochromic Property [J]. Journal of Inorganic Materials, 2025, 40(7): 781-789. |
[5] | SUN Jing, LI Xiang, MAO Xiaojian, ZHANG Jian, WANG Shiwei. Effect of Lauric Acid Modifier on the Hydrolysis Resistance of Aluminum Nitride Powders [J]. Journal of Inorganic Materials, 2025, 40(7): 826-832. |
[6] | CHAI Runyu, ZHANG Zhen, WANG Menglong, XIA Changrong. Preparation of Ceria Based Metal-supported Solid Oxide Fuel Cells by Direct Assembly Method [J]. Journal of Inorganic Materials, 2025, 40(7): 765-771. |
[7] | WANG Lujie, ZHANG Yuxin, LI Tongyang, YU Yuan, REN Pengwei, WANG Jianzhang, TANG Huaguo, YAO Xiumin, HUANG Yihua, LIU Xuejian, QIAO Zhuhui. Corrosion and Wear Behavior of Silicon Carbide Ceramic in Deep-sea Service Environment [J]. Journal of Inorganic Materials, 2025, 40(7): 799-807. |
[8] | LI Wenyuan, XU Jianan, DENG Han'ao, CHANG Aimin, ZHANG Bo. Effect of V5+ Substitution on Microstructure and Microwave Dielectric Properties of LaTaO4 Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 697-703. |
[9] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[10] | DONG Chenyu, ZHENG Weijie, MA Yifan, ZHENG Chunyan, WEN Zheng. Characterizations by Piezoresponse Force Microscopy on Relaxor Properties of Pb(Mg,Nb)O3-PbTiO3 Ultra-thin Films [J]. Journal of Inorganic Materials, 2025, 40(6): 675-682. |
[11] | HE Guoqiang, ZHANG Kaiheng, WANG Zhentao, BAO Jian, XI Zhaochen, FANG Zhen, WANG Changhao, WANG Wei, WANG Xin, JIANG Jiapei, LI Xiangkun, ZHOU Di. Ba(Nd1/2Nb1/2)O3: Au Underrated K40 Microwave Dielectric Ceramic [J]. Journal of Inorganic Materials, 2025, 40(6): 639-646. |
[12] | ZHANG Jiawei, CHEN Ning, CHENG Yuan, WANG Bo, ZHU Jianguo, JIN Cheng. Electrical Properties of Bismuth Layered Piezoelectric Bi4Ti3O12 Ceramics with A/B-site Doping [J]. Journal of Inorganic Materials, 2025, 40(6): 690-696. |
[13] | AN Ran, LIN Si, GUO Shigang, ZHANG Chong, ZHU Shun, HAN Yingchao. Iron-doped Nano-hydroxyapatite: Preparation and Ultraviolet Absorption Performance [J]. Journal of Inorganic Materials, 2025, 40(5): 457-465. |
[14] | CHEN Yi, QIU Haipeng, CHEN Mingwei, XU Hao, CUI Heng. SiC/SiC Composite: Matrix Boron Modification and Mechanical Properties [J]. Journal of Inorganic Materials, 2025, 40(5): 504-510. |
[15] | XIONG Siyu, MO Chen, ZHU Xiaowei, ZHU Guobin, CHEN Deqin, LIU Laijun, SHI Xiaodong, LI Chunchun. Low-temperature Sintering of LiBxAl1-xSi2O6 Microwave Dielectric Ceramics with Ultra-low Permittivity [J]. Journal of Inorganic Materials, 2025, 40(5): 536-544. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||