Journal of Inorganic Materials ›› 2026, Vol. 41 ›› Issue (2): 253-261.DOI: 10.15541/jim20250076
• RESEARCH LETTER • Previous Articles Next Articles
DENG Hengyang1(
), QIN Cuijie1, HAO Shenglan1, FENG Guangdi1,2, ZHU Qiuxiang1(
), TIAN Bobo1,2(
), CHU Junhao1, DUAN Chungang1,3
Received:2025-02-22
Revised:2025-03-14
Published:2025-05-09
Online:2025-05-09
Contact:
ZHU Qiuxiang, associate professor. E-mail: qxzhu@clpm.ecnu.edu.cn;About author:DENG Hengyang (1999-), male, Master candidate. E-mail: 51254700083@stu.ecnu.edu.cn
Supported by:CLC Number:
DENG Hengyang, QIN Cuijie, HAO Shenglan, FENG Guangdi, ZHU Qiuxiang, TIAN Bobo, CHU Junhao, DUAN Chungang. A Rectifier Bridge Circuit Based on Metal-semiconductor-metal Fin Tunneling Diode for High-frequency Application[J]. Journal of Inorganic Materials, 2026, 41(2): 253-261.
Fig. 1 Schematic diagram of line array constituted by TiN/ZnO/Pt FTDs fabricated on a Si/SiO2 substrate, along with cross-sectional view of a single device Upper right inset shows an optical image of an individual device from the top view (scale: 100 μm)
Fig. 2 Fabrication process of the rectifier bridge (a) Deposit TiN bottom circuit; (b) ALD (Atomic layer deposition) deposit Al2O3; (c) Etch holes; (d) Deposit Pt top circuit; (e) Etch Al2O3 and few Pt; (f) Deposit ZnO
Fig. 3 Energy band alignments and electrical characteristics (a) Energy band alignments of ZnO and electrodes (Pt and TiN) after contact; (b) I-V and J-V characteristics of the TiN/ZnO/Pt FTD device across various bias voltage ranges, where the bias is applied to the bottom electrode (TiN) and the top electrode (Pt) remains grounded
Fig. 4 Energy band alignments and fitting of tunneling mechanism of the FTD (a) Energy band alignments of the FTD and (b) ln(I/V2) vs. V-1 plots with FNT fitting under positive voltage; (c) Energy band alignments of the FTD and (d) lnI vs. V-1 plots with TAT fitting under negative voltage
Fig. 5 Rectification performance of FTD (10 nm) and FTD (5 nm) (a) I-V characteristics from experiments of FTD (10 nm) and FTD (5 nm); (b) I-V characteristics of FTD (10 nm) and FTD (5 nm) on a linear scale with Von values being obtained by linear extrapolation; (c) Asymmetry and nonlinearity and (d) responsivity and resistivity of the TiN/ZnO/Pt FTD (10 nm) and FTD (5 nm)
| Structure | fAsy | Von/V | fRes (@0 V)/V-1 | Resistivity/(Ω·cm) |
|---|---|---|---|---|
| Nb/Nb2O3/Pt[ | 1500 | 0.15 | 10 | 8.3×108 (120×120π μm2) |
| Ni/NiO/ZnO/Cr[ | 16 | 0.25 | <5 | 9.5×105 (20×20 μm2) |
| Ti/TiO2/Gr[ | 320 | ~0.8 | 12 | 2.9×104 (140 μm2) |
| Ti/ZnO/Pt[ | <2 | — | 0.125 | 1.125×106 (0.09 mm2) |
| Co/Co3O4/TiO2/Ti[ | 2 | — | 2.2 | 5.8 (0.17 μm2) |
| Pt/Al2O3/Al[ | 107 | 1.4 | <5 | 8.3×1012 (100 μm2) |
| Pt/ZnO/Al2O3/Al[ | 227 | ~0.5 | 13 | 3000-5000 (10×10 μm2) |
| Cr/TiO2/ZnO/Cr[ | 5.6 | — | 0.28 | 1300 (104 μm2) |
| FTD (10 nm) (This work) | 1.6×104 | 0.1 | 25.3 | 8.8×104 (0.02×500 μm2) |
| FTD (5 nm) (This work) | 1.6×103 | 0.1 | 28.3 | 8.8×104 (0.02×500 μm2) |
Table 1 Comparison of rectification performance among different tunneling diodes
| Structure | fAsy | Von/V | fRes (@0 V)/V-1 | Resistivity/(Ω·cm) |
|---|---|---|---|---|
| Nb/Nb2O3/Pt[ | 1500 | 0.15 | 10 | 8.3×108 (120×120π μm2) |
| Ni/NiO/ZnO/Cr[ | 16 | 0.25 | <5 | 9.5×105 (20×20 μm2) |
| Ti/TiO2/Gr[ | 320 | ~0.8 | 12 | 2.9×104 (140 μm2) |
| Ti/ZnO/Pt[ | <2 | — | 0.125 | 1.125×106 (0.09 mm2) |
| Co/Co3O4/TiO2/Ti[ | 2 | — | 2.2 | 5.8 (0.17 μm2) |
| Pt/Al2O3/Al[ | 107 | 1.4 | <5 | 8.3×1012 (100 μm2) |
| Pt/ZnO/Al2O3/Al[ | 227 | ~0.5 | 13 | 3000-5000 (10×10 μm2) |
| Cr/TiO2/ZnO/Cr[ | 5.6 | — | 0.28 | 1300 (104 μm2) |
| FTD (10 nm) (This work) | 1.6×104 | 0.1 | 25.3 | 8.8×104 (0.02×500 μm2) |
| FTD (5 nm) (This work) | 1.6×103 | 0.1 | 28.3 | 8.8×104 (0.02×500 μm2) |
Fig. 6 Fitting of tunneling mechanism for FTD (5 nm) (a) ln(I/V2) vs. V-1 plots with FNT fitting under positive voltage; (b) lnI vs. V-1 plots with TAT fitting under negative voltage
Fig. 7 I-V curves obtained from TCAD simulations for TiN/ZnO/Pt FTDs with tunneling distances of 10 and 5 nm, analyzed using the FNT model under positive bias and the TAT model under negative bias
Fig. 8 Scheme and experiment for full-wave rectifier bridge (a) Test scheme for full-wave rectifier bridge; (b) Circuit scheme for full-wave rectifier bridge; (c) Structure schematic of full-wave rectifier bridge; (d) Layout diagram of full wave rectifier circuit (left) and corresponding rectification result (right); (e-g) Normalized full-wave rectification results of full-wave rectifier based on the TiN/ZnO/Pt FTDs with Vpp=1.5 V at frequencies of 1 (e), 2 (f) and 5 Hz (g), respectively
| Parameter | Description | Unit | Value |
|---|---|---|---|
| TOX | Thickness of tunneling layer | Å | 100 |
| IF | Forward Fowler-Nordheim current coefficient | A/V2 | 5×10-16 |
| IR | Reverse Fowler-Nordheim current coefficient | A/V2 | 1×10-16 |
| EF | Forward critical electric field | V/cm | 2×106 |
| ER | Reverse critical electric field | V/cm | 2×108 |
| L | Diode length | m | 2×10-8 |
| W | Diode width | m | 5×10-4 |
Table 2 Parameters of the ideal physical model of FTD
| Parameter | Description | Unit | Value |
|---|---|---|---|
| TOX | Thickness of tunneling layer | Å | 100 |
| IF | Forward Fowler-Nordheim current coefficient | A/V2 | 5×10-16 |
| IR | Reverse Fowler-Nordheim current coefficient | A/V2 | 1×10-16 |
| EF | Forward critical electric field | V/cm | 2×106 |
| ER | Reverse critical electric field | V/cm | 2×108 |
| L | Diode length | m | 2×10-8 |
| W | Diode width | m | 5×10-4 |
| [1] |
KHAN A A, JAYASWAL G, GAHAFFAR F A, et al. Metal- insulator-metal diodes with sub-nanometre surface roughness for energy-harvesting applications. Microelectron. Eng., 2017, 181: 34.
DOI URL |
| [2] |
DRAGOMAN M, ALDRIGO M. Graphene rectenna for efficient energy harvesting at terahertz frequencies. Appl. Phys. Lett., 2016, 109(11): 113105.
DOI URL |
| [3] |
OLLER D, OSGOOD R, XU J, et al. Optical rectification in a reconfigurable resistive switching filament. Appl. Phys. Lett., 2019, 115(4): 043101.
DOI URL |
| [4] |
WEERAKKODY A, BELKADI A, MODDEL G. Nonstoichiometric nanolayered Ni/NiO/Al2O3/CrAu metal-insulator-metal infrared rectenna. ACS Appl. Nano Mater., 2021, 4(3): 2470.
DOI URL |
| [5] |
BELKADI A, WEERAKKODY A, MODDEL G. Demonstration of resonant tunneling effects in metal-double-insulator-metal (MI(2)M) diodes. Nat. Commun., 2021, 12: 2925.
DOI |
| [6] |
SHAYGAN M, WANG Z, ELSAYED M S, et al. High performance metal-insulator-graphene diodes for radio frequency power detection application. Nanoscale, 2017, 9(33): 11944.
DOI PMID |
| [7] |
SANCHEZ A, DAVIS C F, LIU K C, et al. The MOM tunneling diode: theoretical estimate of its performance at microwave and infrared frequencies. J. Appl. Phys., 1978, 49(10): 5270.
DOI URL |
| [8] |
NISHIDA Y, NISHIGAMI N, DIEBOLD S, et al. Terahertz coherent receiver using a single resonant tunnelling diode. Sci. Rep., 2019, 9: 18125.
DOI PMID |
| [9] |
MITROVIC I Z, ALMALKI S, TEKIN S B, et al. Oxides for rectenna technology. Materials, 2021, 14(18): 5218.
DOI URL |
| [10] |
ALSHEHRI A H, MISTRY K, NGUYEN V H, et al. Quantum- tunneling metal-insulator-metal diodes made by rapid atmospheric pressure chemical vapor deposition. Adv. Funct. Mater., 2018, 29(7): 1805533.
DOI URL |
| [11] |
ANDERSON E C, BOUGHER T L, COLA B A. High performance multiwall carbon nanotube-insulator-metal tunnel diode arrays for optical rectification. Adv. Electron. Mater., 2018, 4(3): 1700446.
DOI URL |
| [12] |
ALSHEHRI A H, SHAHIN A, MISTRY K, et al. Metal- insulator-insulator-metal diodes with responsivities greater than 30 A·W-1 based on nitrogen-doped TiOx and AlOx insulator layers. Adv. Electron. Mater., 2021, 7(11): 2100467.
DOI URL |
| [13] |
ALIMARDANI N, CONLEY J F. Enhancing metal-insulator- insulator-metal tunnel diodes via defect enhanced direct tunneling. Appl. Phys. Lett., 2014, 105(8): 082902.
DOI URL |
| [14] |
SHRIWASTAVA S, TRIPATHI C C. Metal-insulator-metal diodes: a potential high frequency rectifier for rectenna application. J. Electron. Mater., 2019, 48(5): 2635.
DOI |
| [15] | ZHANG X, GRAJAL J, VAZQUEZ-ROY J L, et al. Two- dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting. Nature, 2019, 566(7744): 368. |
| [16] |
HOLDEN K E K, QI Y, CONLEY J F. Precision defect engineering of metal/insulator/metal diodes using atomic layer deposition to localize Ni impurities in Al2O3 tunnel barriers. J. Appl. Phys., 2021, 129(14): 144502.
DOI URL |
| [17] |
SINGH A, RATNADURAI R, KUMAR R, et al. Fabrication and current-voltage characteristics of NiOx/ZnO based MIIM tunnel diode. Appl. Surf. Sci., 2015, 334: 197.
DOI URL |
| [18] | RATNADURAI R, KRISHNAN S, STEFANAKOS E, et al. Nanomanufacturability of thin film MIM diodes. AIP Conference Proceedings, 2010, 1313: 403. |
| [19] |
PERIASAMY P, BERRY J J, DAMERON A A, et al. Fabrication and characterization of MIM diodes based on Nb/Nb2O5 via a rapid screening technique. Adv. Mater., 2011, 23(27): 3080.
DOI URL |
| [20] | PERIASAMY P, GUTHREY H L, ABDULAGATOV A I, et al. Metal-insulator-metal diodes: role of the insulator layer on the rectification performance. Adv. Mater., 2013, 25(9): 1301. |
| [21] |
MISTRY K, YAVUZ M, MUSSELMAN K P. Simulated electron affinity tuning in metal-insulator-metal (MIM) diodes. J. Appl. Phys., 2017, 121(18): 184504.
DOI URL |
| [22] |
OZYIGIT D, ULLAH F, GULSARAN A, et al. Manufacturing of quantum-tunneling MIM nanodiodes via rapid atmospheric CVD in terahertz band. Sci. Rep., 2023, 13(1): 20733.
DOI |
| [23] |
WARD D R, HUSER F, PAULY F, et al. Optical rectification and field enhancement in a plasmonic nanogap. Nat. Nanotechnol., 2010, 5(10): 732.
DOI PMID |
| [24] |
LIU Z, ABE S, SHIMIZU M, et al. Enhanced current density and asymmetry of metal-insulator-metal diodes based on self-assembly of Pt nanoparticles. Appl. Phys. Lett., 2023, 122(9): 093502.
DOI URL |
| [25] |
HERNER S B, WEERAKKODY A D, BELKADI A, et al. High performance MIIM diode based on cobalt oxide/titanium oxide. Appl. Phys. Lett., 2017, 110(22): 223901.
DOI URL |
| [26] |
MITROVIC I Z, WEERAKKODY A D, SEDGHI N, et al. Controlled modification of resonant tunneling in metal-insulator- insulator-metal structures. Appl. Phys. Lett., 2018, 112(1): 012902.
DOI URL |
| [27] |
ALSHEHRI A H, ASGARIMOGHADDAM H, DELUMEAU L V, et al. Combinatorial optimization of metal-insulator-insulator-metal (MIIM) diodes with thickness-gradient films via spatial atomic layer deposition. Adv. Electron. Mater., 2024, 10(11): 2400093.
DOI URL |
| [28] |
FENG G, ZHU Q, LIU X, et al. A ferroelectric fin diode for robust non-volatile memory. Nat. Commun., 2024, 15: 513.
DOI PMID |
| [29] |
LIU X, FENG G, FENG X, et al. Ultrahigh rectification ratio in an asymmetric metal/semiconductor/metal nanoscale tunneling junction: implications for high-frequency rectifiers. ACS Appl. Nano Mater., 2023, 6(4): 2491.
DOI URL |
| [30] |
LIU H, ZHANG L, LEBEGUE S, et al. Morphology-electronic effects in ultra-model nanocatalysts under the CO oxidation reaction: the case of ZnO ultrathin films grown on Pt(111). Nanoscale, 2024, 16(43): 20216.
DOI URL |
| [31] |
CHEN T, YU K, HU H, et al. Engineering electron transport layer with ionic liquid for high-performance quantum dot light-emitting diodes. ACS Appl. Nano Mater., 2025, 8(9): 4573.
DOI URL |
| [32] |
SHINDE P, HASE Y, DOIPHODE V, et al. Morphology-dependent ZnO/MoS2 heterostructures for enhanced photoelectrochemical water splitting. ACS Appl. Energ. Mater., 2025, 8(2): 935.
DOI URL |
| [33] |
ALIMARDANI N, KING S W, FRENCH B L, et al. Investigation of the impact of insulator material on the performance of dissimilar electrode metal-insulator-metal diodes. J. Appl. Phys., 2014, 116(2): 024508.
DOI URL |
| [34] |
CONG X, ZHENG Y, HUANG F, et al. Efficiently band-tailored type-Ⅲ van der Waals heterostructure for tunnel diodes and optoelectronic devices. Nano Res., 2022, 15(9): 8442.
DOI |
| [35] |
LEE G H, YU Y J, LEE C, et al. Electron tunneling through atomically flat and ultrathin hexagonal boron nitride. Appl. Phys. Lett., 2011, 99(24): 243114.
DOI URL |
| [36] |
MA Q, ANDERSEN T I, NAIR N L, et al. Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure. Nat. Phys., 2016, 12(5): 455.
DOI |
| [37] |
VU Q A, LEE J H, NGUYEN V L, et al. Tuning carrier tunneling in van der waals heterostructures for ultrahigh detectivity. Nano Lett., 2017, 17(1): 453.
DOI PMID |
| [38] |
TEKIN S B, ALMALKI S, FINCH H, et al. Electron affinity of metal oxide thin films of TiO2, ZnO, and NiO and their applicability in 28.3 THz rectenna devices. J. Appl. Phys., 2023, 134(8): 084503.
DOI URL |
| [39] | FOWLER R H, NORDHEIM L. Electron emission in intense electric fields. Proc. Roy. Soc. A, 1928, 119(791): 173. |
| [40] |
YU S, GUAN X, WONG H S P. Conduction mechanism of TiN/HfOx/Pt resistive switching memory: a trap-assisted-tunneling model. Appl. Phys. Lett., 2011, 99(6): 063507.
DOI URL |
| [41] |
CHANG W J, HOUNG M P, WANG Y H. Electrical properties and modeling of ultrathin impurity-doped silicon dioxides. J. Appl. Phys., 2001, 90(10): 5171.
DOI URL |
| [42] |
TSIARAPAS C, GIRGINOUDI D, DIMITRIADIS E I, et al. Investigation on deep level defects in polycrystalline ZnO thin films. J. Vac. Sci. Technol. B, 2017, 35(3): 031203.
DOI URL |
| [1] | ZHANG Guangheng, SHI Jinyu, SHEN Hongyu, ZHANG Jie, WANG Jingyang. Synergistic Mechanism of Gd3+ and Yb3+ on Crystallization Behavior of CMAS Corrosion Products [J]. Journal of Inorganic Materials, 2026, 41(1): 27-36. |
| [2] | GAO Yuan, WEI Bo, JIN Fangjun, LÜ Zhe, LING Yihan. Ag Doping Modulating Cathode Acidic Sites to Enhance Chromium Resistance for Intermediate Temperature Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2026, 41(1): 70-78. |
| [3] | ZHANG Yongheng, CHEN Jixin. Preparation and Properties of Ytterbium Aluminosilicate Glass and SiC Modified h-BN-based Composites [J]. Journal of Inorganic Materials, 2026, 41(1): 37-44. |
| [4] | YUAN Zihao, XU Yinsheng, LI Xinkuo, TAN Dezhi. Femtosecond Laser Modulation on Luminescence Properties of CdS Quantum Dot Glasses [J]. Journal of Inorganic Materials, 2026, 41(1): 105-112. |
| [5] | HAN Weiwei, HUANG Dong, LI Tingsong, LI Jiang. Sm:LuAG/Nd:LuAG Composite Laser Ceramics with Cladding Structure: Fabrication and Properties [J]. Journal of Inorganic Materials, 2026, 41(1): 113-118. |
| [6] | XU Jintao, GAO Pan, HE Weiyi, JIANG Shengnan, PAN Xiuhong, TANG Meibo, CHEN Kun, LIU Xuechao. Recent Progress on Preparation of 3C-SiC Single Crystal [J]. Journal of Inorganic Materials, 2026, 41(1): 1-11. |
| [7] | LING Yihan, GUO Sheng, CAO Zhiqiang, TIAN Yunfeng, LIU Fangsheng, JIN Fangjun, GAO Yuan. Research Progress on Preparation Technologies and Performance of Straight-pore Electrode Structures for Solid Oxide Cells [J]. Journal of Inorganic Materials, 2025, 40(12): 1311-1323. |
| [8] | WANG Zhe, HAO Hongru, WU Zonghui, XU Lingling, LÜ Zhe, WEI Bo. Enhancing Cr-tolerance Ability of Double Perovskite Cathodes through Configuration Entropy Engineering [J]. Journal of Inorganic Materials, 2025, 40(12): 1341-1348. |
| [9] | WU Mingxuan, LI Junjie, CHEN Shuo, YAN Yonggao, SU Xianli, ZHANG Qingjie, TANG Xinfeng. Homogeneity of Zone-melted n-type Bi1.96Sb0.04Te2.70Se0.30 Thermoelectric Material [J]. Journal of Inorganic Materials, 2025, 40(11): 1252-1260. |
| [10] | ZHANG Haifeng, JIANG Meng, SUN Tingting, WANG Lianjun, JIANG Wan. Preparation of p-type GeMnTe2 Based Thermoelectric Materials with Stable Cubic Phase [J]. Journal of Inorganic Materials, 2025, 40(11): 1245-1251. |
| [11] | LI Chengming, ZHOU Chuang, LIU Peng, ZHENG Liping, LAI Yongji, CHEN Liangxian, LIU Jinlong, WEI Junjun. Stress in CVD Diamond Films: Generation, Suppression, Application, and Measurement [J]. Journal of Inorganic Materials, 2025, 40(11): 1188-1200. |
| [12] | YUAN Long, JIA Ru, YUAN Meng, ZHANG Jian, DUAN Yu, MENG Xiangdong. Mechanism and Application of X-ray Induced Photochromic Materials: A Review [J]. Journal of Inorganic Materials, 2025, 40(10): 1097-1110. |
| [13] | AI Yizhaotong, REN Jiulong, QIANG Linya, ZHANG Xiaozhen, YANG Kai, GAO Yanfeng. Friction and Wear Properties of Al2O3-GdAlO3 (GAP) Amorphous Ceramic Coatings under High Load Capacity [J]. Journal of Inorganic Materials, 2025, 40(10): 1111-1118. |
| [14] | CAO Luhan, MENG Jia, XUE Yudong, SHENG Xiaochen, CUI Yuanyuan, LE Jun, SONG Lixin. Effect of SiC Transition Layer on Bonding Properties of MoSi2-SABB Coating on SiC/SiC Ceramic Matrix Composites [J]. Journal of Inorganic Materials, 2025, 40(10): 1119-1128. |
| [15] | WAN Xinyi, WANG Wenqi, LI Jiacheng, ZHAO Junliang, MA Dongyun, WANG Jinmin. Colorless/Black Switching Electrochromic Device Based on WO3·xH2O and Reversible Metal Electrodeposition [J]. Journal of Inorganic Materials, 2025, 40(10): 1163-1174. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||