Journal of Inorganic Materials
ZHANG Guangheng1,2, SHI Jinyu1,2, SHEN Hongyu1,3, ZHANG Jie1, WANG Jingyang1
Received:
2025-02-20
Revised:
2025-05-14
Contact:
ZHANG Jie, professor. E-mail: jiezhang@imr.ac.cn
About author:
ZHANG Guangheng (1996-), male, PhD. E-mail: ghzhang@lam.ln.cn
Supported by:
CLC Number:
ZHANG Guangheng, SHI Jinyu, SHEN Hongyu, ZHANG Jie, WANG Jingyang. Synergistic Mechanism of Gd3+ and Yb3+ on Crystallization Behavior of CMAS Corrosion Products[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250073.
[1] WEI Z, MENG G, CHEN L,et al. Progress in ceramic materials and structure design toward advanced thermal barrier coatings. Journal of Advanced Ceramics, 2022, 11(7): 985. [2] TEJERO M D, BENNETT C, HUSSAIN T.A review on environmental barrier coatings: History, current state of the art and future developments.Journal of the European Ceramic Society, 2021, 41(3): 1747. [3] POERSCHKE D L, JACKSON R W, LEVI C G.Silicate deposit degradation of engineered coatings in gas turbines: progress toward models and materials solutions.Annual Review of Materials Research, 2017, 47(1): 297. [4] NIETO A, AGRAWAL R, BRAVO L,et al. Calcia-magnesia-alumina-silicate (CMAS) attack mechanisms and roadmap towards Sandphobic thermal and environmental barrier coatings. International Materials Reviews, 2020, 66(7): 451. [5] MERCER C, FAULHABER S, EVANS A G,et al. A delamination mechanism for thermal barrier coatings subject to calcium-magnesium-alumino-silicate (CMAS) infiltration. Acta Materialia, 2005, 53(4): 1029. [6] POERSCHKE D L, SHAW J H, VERMA N,et al. Interaction of yttrium disilicate environmental barrier coatings with calcium-magnesium-iron alumino-silicate melts. Acta Materialia, 2018, 145: 451. [7] SUMMERS W D, POERSCHKE D L, TAYLOR A A,et al. Reactions of molten silicate deposits with yttrium monosilicate. Journal of the American Ceramic Society, 2020, 103(4): 2919. [8] MOTOC A M, VALSAN S, SLOBOZEANU A E,et al. Design, fabrication, and characterization of new materials based on zirconia doped with mixed rare earth oxides: review and first experimental results. Metals, 2020, 10(6): 746. [9] ZHANG Z, PENG F, HUANG Y,et al. CMAS corrosion resistance of rare-earth cerates at higher temperature. Ceramics International, 2025, 51(6): 7906. [10] MOURET T, MAILLé L, DANET J,et al. Thermochemical interaction of pure rare earth silicates (Y and Yb) with CMAS: role and stability of the corrosion products. Corrosion Science, 2025, 250: 112864. [11] TIAN Z, ZHANG J, ZHENG L,et al. General trend on the phase stability and corrosion resistance of rare earth monosilicates to molten calcium-magnesium-aluminosilicate at 1300 oC. Corrosion Science, 2019, 148: 281. [12] POERSCHKE D L, LEVI C G.Effects of cation substitution and temperature on the interaction between thermal barrier oxides and molten CMAS.Journal of the European Ceramic Society, 2015, 35(2): 681. [13] KRäMER S, YANG J, LEVI C G. Infiltration-Inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts.Journal of the American Ceramic Society, 2008, 91(2): 576. [14] ZHONG X, WANG Y, NIU Y,et al. Corrosion behaviors and mechanisms of ytterbium silicate environmental barrier coatings by molten calcium-magnesium-alumino-silicate melts. Corrosion Science, 2021, 191: 109718. [15] POERSCHKE D L, BARTH T L, LEVI C G.Equilibrium relationships between thermal barrier oxides and silicate melts.Acta Materialia, 2016, 120: 302. [16] KIM S-H, NAGASHIMA N, MATSUSHITA Y,et al. Interaction of Gd2Si2O7 with CMAS melts for environmental barrier coatings. Journal of the European Ceramic Society, 2023, 43(2): 593. [17] WU N, WANG Y, TONG Y,et al. Interaction of ytterbium monosilicate environmental barrier coating material with molten calcium-magnesium-aluminosilicate (CMAS). Corrosion Science, 2023, 211: 110864. [18] LIU P, ZHONG X, NIU Y,et al. Reaction behaviors and mechanisms of tri-layer Yb2SiO5/Yb2Si2O7/Si environmental barrier coatings with molten calcium-magnesium-alumino-silicate. Corrosion Science, 2022, 197: 110069. [19] TURCER L R, PADTURE N P.Towards multifunctional thermal environmental barrier coatings (TEBCs) based on rare-earth pyrosilicate solid-solution ceramics.Scripta Materialia, 2018, 154: 111. [20] STEINBERG L, MIKULLA C, NARAPARAJU R, ,et al. Erosion behavior of CMAS/VA infiltrated EB-PVD Gd2Zr2O7 TBCs: Special emphasis on the effect of mechanical properties of the reaction products. Wear. Erosion behavior of CMAS/VA infiltrated EB-PVD Gd2Zr2O7 TBCs: Special emphasis on the effect of mechanical properties of the reaction products. Wear, 2022, 506-507: 204450. [21] QIAN B, WANG Y, ZU J,et al. A review on multicomponent rare earth silicate environmental barrier coatings. Journal of Materials Research and Technology, 2024, 29: 1231. [22] VAKILIFARD H, SHAHBAZI H, LIBERATI A C,et al. High entropy oxides as promising materials for thermal barrier topcoats: a review. Journal of Thermal Spray Technology, 2024, 33(2-3): 447. [23] DENG S, HE G, YANG Z,et al. Calcium-magnesium-alumina-silicate (CMAS) resistant high entropy ceramic (Y0.2Gd0.2Er0.2Yb0.2Lu0.2)2Zr2O7 for thermal barrier coatings. Journal of Materials Science & Technology, 2022, 107: 259. [24] LUO Z, JIANG J, DONG S,et al.(Gd0.2Ho0.2Er0.2Yb0.2Lu0.2)2Si2O7 and (Sc0.2Ho0.2Er0.2Yb0.2Lu0.2)2Si2O7 high-entropy rare-earth disilicates as promising materials for environmental barrier coatings. Ceramics International, 2024, 50(13): 23342. [25] SUN L, LUO Y, TIAN Z,et al. High temperature corrosion of (Er0.25Tm0.25Yb0.25Lu0.25)2Si2O7 environmental barrier coating material subjected to water vapor and molten calcium-magnesium-aluminosilicate (CMAS). Corrosion Science, 2020, 175: 108881. [26] WANG X, MENG M, XU F,et al.(Lu1/7Yb1/7Sc1/7Er1/7Y1/7Ho1/7Dy1/7)2Si2O7 high entropy rare-earth disilicate with low thermal conductivity and excellent resistance to CMAS corrosion. Journal of Advanced Ceramics, 2024, 13(5): 549. [27] POERSCHKE D L.Developments in thermodynamic models of deposit-induced corrosion of high-temperature coatings.The Journal of the Minerals, Metals & Materials Society, 2021, 74(1): 260. [28] POERSCHKE D L, BARTH T L, FABRICHNAYA O,et al. Phase equilibria and crystal chemistry in the calcia-silica-yttria system. Journal of the European Ceramic Society, 2016, 36(7): 1743. [29] YAMANE H, NAGASAWA T, SHIMADA M,et al. Ca3Y2(SiO4)3. Acta Crystallographica Section C: Crystal Structure Communications, 1997, 53: 1367. [30] GODBOLE E, VON DER HANDT A, POERSCHKE D. Apatite and garnet stability in the Al-Ca-Mg-Si-(Gd/Y/Yb)-O systems and implications for T/EBC: CMAS reactions.Journal of the American Ceramic Society, 2021, 105(2): 1596. [31] PICCINELLI F, LAUSI A, SPEGHINI A,et al. Crystal structure study of new lanthanide silicates with silico-carnotite structure. Journal of Solid State Chemistry, 2012, 194: 233. [32] ZHANG G, ZHANG J, WANG J.Synthesis and characterization of ytterbium oxide: a novel CMAS-resistant environmental barrier coating material.Journal of the American Ceramic Society, 2022, 106(1): 621. [33] GODBOLE E, KARTHIKEYAN N, POERSCHKE D.Garnet stability in the Al-Ca-Mg-Si-Y-O system with implications for reactions between TBCs, EBCs, and silicate deposits.Journal of the American Ceramic Society, 2020, 103(9): 5270. [34] SHANNON R D.Revised effective ionic radii and systematic studies of interatomie distances.Acta Crystallographica Section A: Foundations of Crystallography, 1976, 25: 751. [35] ZHANG G, SHI J, ZHANG J,et al. Investigation on crystallization behavior between (ScxYb1-x)O1.5 and CMAS: A new insight in the effect of Sc substitution. Journal of Advanced Ceramics, 2024, 13(6): 789. [36] ZHENG X, ZHANG L, LI Q,et al. Corrosion behavior and mechanism of aluminum-rich CMAS on rare-earth silicate environmental barrier coatings. Journal of Inorganic Materials, 2023, 38(5): 544. |
[1] | CHEN Libo, SHENG Ying, WU Ming, SONG Jiling, JIAN Jian, SONG Erhong. Na and O Co-doped Carbon Nitride for Efficient Photocatalytic Hydrogen Evolution [J]. Journal of Inorganic Materials, 2025, 40(5): 552-562. |
[2] | FAN Wenkai, YANG Xiao, LI Honghua, LI Yong, LI Jiangtao. Pressureless Sintering of (Y0.2Gd0.2Er0.2Yb0.2Lu0.2)2Zr2O7 High-entropy Ceramic and Its High Temperature CMAS Corrosion Resistance [J]. Journal of Inorganic Materials, 2025, 40(2): 159-167. |
[3] | LI Liuyuan, HUANG Kaiming, ZHAO Xiuyi, LIU Huichao, WANG Chao. Influence of RE-Si-Al-O Glass Phase on Microstructure and CMAS Corrosion Resistance of High Entropy Rare Earth Disilicates [J]. Journal of Inorganic Materials, 2024, 39(7): 793-802. |
[4] | LI Jie, LUO Zhixin, CUI Yang, ZHANG Guangheng, SUN Luchao, WANG Jingyang. CMAS Corrosion Resistance of Y3Al5O12/Al2O3 Ceramic Coating Deposited by Atmospheric Plasma Spraying [J]. Journal of Inorganic Materials, 2024, 39(6): 671-680. |
[5] | ZHANG Wenyu, GUO Ruihua, YUE Quanxin, HUANG Yarong, ZHANG Guofang, GUAN Lili. High-entropy Phosphide Bifunctional Catalyst: Preparation and Performance of Efficient Water Splitting [J]. Journal of Inorganic Materials, 2024, 39(11): 1265-1274. |
[6] | SUN Qiangqiang, CHEN Zixuan, YANG Ziyue, WANG Yimeng, CAO Baoyue. Amorphous Vanadium Oxide Loaded by Metallic Nickel-copper towards High-efficiency Electrocatalyzing Hydrogen Production [J]. Journal of Inorganic Materials, 2023, 38(6): 647-655. |
[7] | FAN Dong, ZHONG Xin, WANG Yawen, ZHANG Zhenzhong, NIU Yaran, LI Qilian, ZHANG Le, ZHENG Xuebin. Corrosion Behavior and Mechanism of Aluminum-rich CMAS on Rare-earth Silicate Environmental Barrier Coatings: [J]. Journal of Inorganic Materials, 2023, 38(5): 544-552. |
[8] | WANG Ping,LI Xinyu,SHI Zhanling,LI Haitao. Synergistic Effect of Ag and Ag2O on Photocatalytic H2-evolution Performance of TiO2 [J]. Journal of Inorganic Materials, 2020, 35(7): 781-788. |
[9] | FAN Jia-Feng,ZHANG Xiao-Feng,ZHOU Ke-Song,LIU Min,DENG Chang-Guang,DENG Chun-Ming,NIU Shao-Peng,DENG Zi-Qian. Influence of Al-modification on CMAS Corrosion Resistance of PS-PVD 7YSZ Thermal Barrier Coatings [J]. Journal of Inorganic Materials, 2019, 34(9): 938-946. |
[10] | ZHANG Xiao-Feng, ZHOU Ke-Song, SONG Jin-Bing, DENG Chun-Ming, NIU Shao-Peng, DENG Zi-Qian. Deposition and CMAS Corrosion Mechanism of 7YSZ Thermal Barrier Coatings Prepared by Plasma Spray-Physical Vapor Deposition [J]. Journal of Inorganic Materials, 2015, 30(3): 287-293. |
[11] | ZHAO Cai-Xia,ZHANG Wei-De. Preparation and Antibacterial Properties of Titanium (Ⅳ) and Zinc (Ⅱ) Co-doped Nanohydroxyapatite [J]. Journal of Inorganic Materials, 2009, 24(6): 1243-1248. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||