Journal of Inorganic Materials
WU Mingxuan1,2, LI Junjie1,2, CHEN Shuo1,2, YAN Yonggao1,2, SU Xianli1,2, ZHANG Qingjie2, TANG Xinfeng1,2
Received:
2025-02-07
Revised:
2025-05-14
About author:
WU Mingxuan (2000-), male, Master candidate. E-mail: krenwu_u@whut.edu.cn
Supported by:
CLC Number:
WU Mingxuan, LI Junjie, CHEN Shuo, YAN Yonggao, SU Xianli, ZHANG Qingjie, TANG Xinfeng. Homogeneity of Zone-melted n-type Bi1.96Sb0.04Te2.70Se0.30 Thermoelectric Material[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250045.
[1] YANG D, XING Y, WANG J, et al. Multifactor roadmap for designing low‐power‐consumed micro thermoelectric thermostats in a closed‐loop integrated 5G optical module. Interdisciplinary Materials, 2024, 3(2): 326. [2] 范人杰, 江先燕, 陶奇睿, et al. In1+xTe化合物的结构及热电性能研究. 物理学报, 2021, 70(13): 393. [3] LIU Z, HONG T, XU L, et al. Lattice expansion enables interstitial doping to achieve a high average ZT in n‐type PbS. Interdisciplinary Materials, 2023, 2(1): 161. [4] QIU J, YAN Y, XIE H, et al. Achieving superior performance in thermoelectric Bi0.4Sb1.6Te3.72 by enhancing texture and inducing high-density line defects. Sci. China Mater, 2021, 64: 1507. [5] 唐新峰, 柳伟, 谭刚健, 等. 热电材料物理化学. 北京:科学出版社, 2024: 1-30. [6] 陈立东, 刘睿恒, 史迅. 热电材料与器件. 北京:科学出版社, 2018: 1-18. [7] 张建中. 温差电技术. 电源技术, 2016(3): 754. [8] LIN L, ZHANG Y F, LIU H B, et al. A new configuration design of thermoelectric cooler driven by thermoelectric generator. Applied Thermal Engineering, 2019, 160: 114087. [9] LIU W D, WANG D Z, LIU Q, et al. High‐performance GeTe‐based thermoelectrics: from materials to devices. Advanced Energy Materials, 2020, 10(19): 2000367. [10] TAN G, ZHAO L D, KANATZIDIS M G.Rationally designing high-performance bulk thermoelectric materials.Chemical Reviews, 2016, 116(19): 12123. [11] HE J, TRITT T M. Advances in thermoelectric materials research: looking back and moving forward. Science, 2017, 357(6358): eaak9997. [12] ROWE D M.Thermoelectrics handbook: macro to nano. Boston: CRC press, 2018: 1008. [13] 訾鹏, 白辉, 汪聪, 等 AgyIn3.33-y/3Se5化合物结构和热电性能. 物理学报, 2022, 71(11): 326. [14] XIE H, ZHAO L D, KANATZIDIS M G.Lattice dynamics and thermoelectric properties of diamondoid materials.Interdisciplinary Materials, 2024, 3(1): 5. [15] HUANG Y, LYU T, ZENG M, et al. Manipulation of metavalent bonding to stabilize metastable phase: a strategy for enhancing ZT in GeSe. Interdisciplinary Materials, 2024: 3(4): 607. [16] YANG D, LUO T, SU X, et al. Unveiling the intrinsic low thermal conductivity of BiAgSeS through entropy engineering in SHS kinetic process. Journal of Inorganic Materials, 2021, 36(9): 991. [17] GONG H, SU X L, YAN Y G, et al. Ultra-fast synthesis of Cu2S thermoelectric materials under pulsed electric field. Journal of Inorganic Materials, 2019, 34(12): 1295. [18] PEIAN R, CONG W, PENG Z, et al. Effect of Te and In co-doping on thermoelectric properties of Cu2SnSe3 compounds. Journal of Inorganic Materials, 2022, 37(10): 1079. [19] YANG J, CAILLAT T.Thermoelectric materials for space and automotive power generation.MRS bulletin, 2006, 31(3): 224. [20] WANG W C, CHANG Y L.Experimental investigation of thermal deformation in thermoelectric coolers.Strain, 2011, 47: 232. [21] SNYDER G J, URSELL T S.Thermoelectric efficiency and compatibility.Physical Review Letters, 2003, 91(14): 148301. [22] SNYDER G J, SNYDER A H.Figure of meritZT of a thermoelectric device defined from materials properties. Energy & Environmental Science, 2017, 10(11): 2280. [23] 郭凯, 骆军, 赵景泰. 热电材料的基本原理, 关键问题及研究进展. 自然杂志, 2015, 37(3): 175. [24] 唐昊, 白辉, 吕嘉南, 等. 表面修饰工程协同优化Bi2Te3基微型热电器件的界面性能. 物理学报, 2022, 71(16): 330. [25] YANG X, SU X L, YAN Y G, et al.Structures and thermoelectric properties of (GeTe)(n)Bi2Te3. Journal of Inorganic Materials, 2021, 36(1): 75. [26] CHEN Y, SHI Q, ZHONG Y, et al. Ga intercalation in van der Waals layers for advancing p-type Bi2Te3-based thermoelectrics. Chinese Physics B, 2023, 32(6): 067201. [27] CHI H, LIU W, SUN K, et al. Low-temperature transport properties of Tl-doped Bi2Te3 single crystals. Physical Review B—Condensed Matter and Materials Physics, 2013, 88(4): 045202. [28] LIU F, ZHANG M, NAN P, et al. Unraveling the origin of donor‐like effect in bismuth-telluride‐based thermoelectric materials. Small Science, 2023, 3(8): 2300082. [29] LIU D, BAI S, WEN Y, et al. Lattice plainification and band engineering lead to high thermoelectric cooling and power generation in n-type Bi2Te3 with mass production. National Science Review, 2025, 12(2): nwae448. [30] ZHANG Z, SUN M, LIU J, et al. Ultra-fast fabrication of Bi2Te3 based thermoelectric materials by flash-sintering at room temperature combining with spark plasma sintering. Scientific Reports, 2022, 12(1): 10045. [31] CHEN C, WANG B, YING P,et al. Microstructure engineered Bi2Te3-based materials with outstanding mechanical and thermoelectric properties. Journal of Alloys and Compounds, 2025, 1020: 179543. [32] SHI Q, LI J, ZHAO X, et al. Comprehensive insight into p-type Bi2Te3-based thermoelectrics near room temperature. ACS Applied Materials & Interfaces, 2022, 14(44): 49425. [33] LU Z Q, LIU K K, LI Q, et al. Donor-like effect and thermoelectric performance in p-type Bi0.5Sb1.5Te3 alloy. Journal of Inorganic Materials, 2023, 38(11): 1331. [34] 李强, 陈硕, 刘可可, 等. n型Bi2Te3基化合物的类施主效应和热电性能. 物理学报, 2023, 72(9): 135. [35] ZHANG Q, FANG T, LIU F, et al. Tuning optimum temperature range of Bi2Te3‐based thermoelectric materials by defect engineering. Chemistry-An Asian Journal, 2020, 15(18): 2775. [36] HUANG W, TAN X, CAI J, et al. Synergistic effects improve thermoelectric properties of zone-melted n-type Bi2Te2.7Se0.3. Materials Today Physics, 2023, 32: 101022. [37] 田源, 汪波, 李存成, 等. 区熔n型碲化铋材料的制备及性能优化. 材料科学与工程学报, 2024, 42(2): 186. [38] LIU D, STÖTZEL J, SEYRING M, et al. Anisotropic n-type Bi2Te3-In2Te3 thermoelectric material produced by seeding zone melting and solid state transformation. Crystal Growth & Design, 2016, 16(2): 617. [39] WANG T, ZHOU C, HUANG W, et al. Synergistic improvement of BiI3 and In on thermoelectric properties of zone-melted n-type Bi2Te2.7Se0.3. ACS Applied Materials & Interfaces, 2024, 16(31): 41080. [40] LIU D, LI X, BORLIDO P M D C, et al. Anisotropic layered Bi2Te3-In2Te3 composites: control of interface density for tuning of thermoelectric properties. Scientific Reports, 2017, 7(1): 43611. [41] HA H P, HYUN D B, BYUN J Y, et al. Enhancement of the yield of high-quality ingots in the zone-melting growth of p-type bismuth telluride alloys. Journal of Materials Science, 2002, 37(21): 4691. [42] KIM H S, HEINZ N A, GIBBS Z M, et al. High thermoelectric performance in (Bi0.25Sb0.75)2Te3 due to band convergence and improved by carrier concentration control. Materials Today, 2017, 20(8): 452. [43] PERRIN D, CHITROUB M, SCHERRER S, et al. Study of the n-type Bi2Te2.7Se0.3 doped with bromine impurity. Journal of Physics and chemistry of solids, 2000, 61(10): 1687. [44] KAVEI G, KARAMI M.Thermoelectric crystals Bi2Te2.88Se0.12 undoped and doped by CdCl2 or CdBr2 impurities, fabricated and characterized by XRD and Hall effect.Materials Research Bulletin, 2008, 43(2): 239. [45] CHEN Y R, HWANG W S, HSIEH H L, et al. Thermal and microstructure simulation of thermoelectric material Bi2Te3 grown by zone-melting technique. Journal of Crystal Growth, 2014, 402: 273. [46] KAVEI G, AHMADI K, KAVEI A.Electrical conductivity variation of (Bi2Te3)0.25(Sb2Te3)0.75 crystal grown using the zone melting method.International Journal of Materials Research, 2013, 104(3): 314. [47] XIA H, LI X, XU Q.Macro-micro-coupling simulation and space experiment study on zone melting process of bismuth telluride-based crystal materials.Metals, 2022, 12(5): 886. [48] GUO X, QIN J, JIA X, et al. Quaternary thermoelectric materials: synthesis, microstructure and thermoelectric properties of the (Bi,Sb)2(Te,Se)3 alloys. Journal of Alloys and Compounds, 2017, 705: 363. [49] CHAUHAN N S, PYRLIN S V, LEBEDEV O I, et al. Compositional fluctuations mediated by excess tellurium in bismuth antimony telluride nanocomposites yield high thermoelectric performance. The Journal of Physical Chemistry C, 2021, 125(37): 20184. [50] LIU Y, ZHANG Y, LIM K H, et al. High thermoelectric performance in crystallographically textured n-type Bi2Te3-xSex produced from asymmetric colloidal nanocrystals. ACS Nano, 2018, 12(7): 7174. [51] VASIL’EV A, IVANOV O, YAPRYNTSEV M, et al. Aspects of the microstructure and thermoelectric properties of a two-phase ceramic material based on the high-entropy system Bi-Sb-Te-Se-S. Glass and Ceramics, 2023, 80(1): 52. [52] CHEN H W, CHEN B C, WU H J.Dilute Sb doping yields softer p‐type Bi2Te3 thermoelectrics.Advanced Electronic Materials, 2024, 10(6): 2300793. [53] GUAN X, LIU Z, MA N, et al. High-performance p-type Bi2Te3-based thermoelectric materials with a wide temperature range obtained by direct Sb doping. Acta Metallurgica Sinica (English Letters), 2024, 2024: 1. [54] WITTING I T, RICCI F, CHASAPIS T C, et al. The thermoelectric properties of n-type bismuth telluride: bismuth selenide alloys Bi2Te3-xSex. Research, 2020, 2020: 4361703. [55] LI Y, BAI S, WEN Y, et al. Realizing high-efficiency thermoelectric module by suppressing donor-like effect and improving preferred orientation in n-type Bi2(Te,Se)3. Science Bulletin, 2024, 69(11): 1728. |
[1] | HUANG Zhi-Cheng, YAO Yao, PEI Jun, DONG Jin-Feng, ZHANG Bo-Ping, LI Jing-Feng, SHANG Peng-Peng. Preparation and Thermoelectric Property of n-type SnS [J]. Journal of Inorganic Materials, 2019, 34(3): 321-327. |
[2] | LIU Hong-Xia, LI Wen, ZHANG Xin-Yue, LI Juan, PEI Yan-Zhong. Thermoelectric Properties of (Ag2Se)1-x(Bi2Se3)x [J]. Journal of Inorganic Materials, 2019, 34(3): 341-348. |
[3] | HU Gang, ZENG Xie-Rong, MA Jun, ZOU Ji-Zhao, PENG Biao-Lin. Dependence of the Texture on the Thermoelectric Properties of C/C Composites [J]. Journal of Inorganic Materials, 2015, 30(4): 357-362. |
[4] |
ZHAO Ran, MA Li-Min, GUO Fu, HU Yang-Duan-Rui, SHU Yu-Tian.
Preparation and Thermoelectric Transport of Polycrystalline In4Se3 with High Figures of Merit [J]. Journal of Inorganic Materials, 2015, 30(3): 249-255. |
[5] | LIU Li-Hua, SONG Ben-Sheng, LI Feng, WANG Zhen, PAN Hao-Han, LI Yang. Thermoelectric Properties of Ba8Ga15XSi30 (X= Ga, Zn, Cu) [J]. Journal of Inorganic Materials, 2015, 30(3): 261-266. |
[6] | LOU Feng-Guang, WANG Shi-Kai, WANG-Meng, Feng Su-Ya, YU Chun-Lei, HU Li-Li. Sol-Gel Derived Al3+,Yb3+ Co-doped Silica Fiber Core [J]. Journal of Inorganic Materials, 2014, 29(4): 393-398. |
[7] | CAO Li-Li, WANG Yao, DENG Yuan, LUO Bing-Wei, ZHU Wei, SHI Yong-Ming,LIN Zhen. Influence of Cu on Transport Properties of Thermoelectric Thin Film Fabricated via Magnetron Co-sputtering Method [J]. Journal of Inorganic Materials, 2014, 29(2): 215-219. |
[8] | ZHANG Qi-Hao, XU Lei-Lei, WANG Lian-Jun, JIANG Wan. Effects of Different Amount of Se-doping on Microstructures and Thermoelectric Properties of n-type Bi2Te3-xSex [J]. Journal of Inorganic Materials, 2014, 29(11): 1139-1144. |
[9] | LIU Guan-Wei, XIE Zhi-Peng, WU Yin. Application of Doping Ceramics via Infiltration on Translucent Alumina Ceramics [J]. Journal of Inorganic Materials, 2013, 28(4): 375-380. |
[10] | HAN Zhi-Ming, ZHANG Xin, LU Qing-Mei, ZHANG Jiu-Xing, ZHANG Fei-Peng. Preparation and Thermoelectric Properties of (Mg2Si1-xSbx)0.4-(Mg2Sn)0.6 Alloys [J]. Journal of Inorganic Materials, 2012, 27(8): 822-826. |
[11] | LIU Dan-Dan, WANG Shan-Yu, TANG Xin-Feng. Thermoelectric Properties of In4Se3 Synthesized by Combing Sonochemical and SPS Method [J]. Journal of Inorganic Materials, 2012, 27(2): 201-204. |
[12] | SHI Yong-Jun, LU Qing-Mei, ZHANG Xin, ZHANG Jiu-Xing. Microstructure and Thermoelectric Properties of Higher Manganese Silicides [J]. Journal of Inorganic Materials, 2011, 26(7): 691-695. |
[13] | ZHANG Zhi-Wei, WANG Yao, DENG Yuan, TAN Ming. Growth and Transport Properties of Layered Bismuth Telluride Thin Films via Radio Frequency Magnetron Sputtering [J]. Journal of Inorganic Materials, 2011, 26(5): 555-560. |
[14] | PEI Jian, CHEN Gang, WANG Qun, JIN Ren-Cheng. Hydrothermal Synthesis and Thermoelectric Properties of New Oxides (Ca0.85-xNdxOH)1.16CoO2 [J]. Journal of Inorganic Materials, 2010, 25(6): 669-672. |
[15] | ZHANG Yan-Hua1,2, XU Gui-Ying1, GUO Zhi-Min2, HAN Fei1, WANG Ze1, GE Chang-Chun1. Effects of Hydrothermaly Synthesized Sb2Se3 Nanowires on the Thermoelectric Properties of Bi2Te3 Nanopowders [J]. Journal of Inorganic Materials, 2010, 25(6): 615-620. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||