Journal of Inorganic Materials
LING Yihan, GUO Sheng, CAO Zhiqiang, TIAN Yunfeng, LIU Fangsheng, JIN Fanjun, GAO Yuan
Received:
2025-03-24
Revised:
2025-07-07
About author:
LING Yihan, professor. E-mail: lyhyy@cumt.edu.cn
Supported by:
CLC Number:
LING Yihan, GUO Sheng, CAO Zhiqiang, TIAN Yunfeng, LIU Fangsheng, JIN Fanjun, GAO Yuan. Research Progress on Preparation Technologies and Performance of Straight-Pore Electrode Structures for Solid Oxide Cells[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250123.
[1] WEI B, LÜ Z, XU L L,et al. Enhancing Cr-tolerance ability of double perovskite cathodes through configuration entropy engineering. Journal of Inorganic Materials, 2025, DOI: 10.15541/jim20240542. [2] VINCHHI P, KHANDLA M, CHAUDHARY K,et al. Recent advances on electrolyte materials for SOFC: a review. Inorganic Chemistry Communications, 2023, 152: 110724. [3] ZHANG J, RICOTE S, HENDRIKSEN P V,et al. Advanced materials for thin-film solid oxide fuel cells: recent progress and challenges in boosting the device performance at low temperatures. Advanced Functional Materials, 2022, 32(22): 2111205. [4] JIANG Y H, SONG Y F, ZHANG L L,et al. Fluorination of BaZr0.1Ce0.7Y0.1Yb0.1O3 as electrolyte material for proton conducting solid oxide fuel cell. Journal of Inorganic Materials, 2025, DOI: 10.15541/jim20240535. [5] GÓMEZ S Y, HOTZA D. Current developments in reversible solid oxide fuel cells.Renewable and Sustainable Energy Reviews, 2016, 61: 155. [6] ZHANG K, WANG Y, ZHU T L,et al. LaNi0.6Fe0.4O3 cathode contact material: electrical conducting property manipulation and its effect on SOFC electrochemical performance. Journal of Inorganic Materials, 2024, 39(4): 367. [7] CHEN C S, ZHAN Z L, BAN X K,et al. Preparation and property of GDC-LSF dual-phase composite membrane with straight pores and sandwich structure. Journal of Inorganic Materials, 2021, 36(5): 497. [8] 夏美荣, 田丰源, 颜晓敏, 等. 造孔剂对流延法制备的阳极支撑SOFC性能的影响. 电源技术, 2022, 46(5): 492. [9] SHAO X, DONG D H, PARKINSON G,et al. A microchanneled ceramic membrane for highly efficient oxygen separation. Journal of Materials Chemistry A, 2013, 1(34): 9641. [10] YANG Y, LIU F S, HAN X,et al. Highly efficient and stable fuel-catalyzed dendritic microchannels for dilute ethanol fueled solid oxide fuel cells. Applied Energy, 2022, 307: 118222. [11] CHEN Y, BUNCH J, LI T S,et al. Novel functionally graded acicular electrode for solid oxide cells fabricated by the freeze-tape-casting process. Journal of Power Sources, 2012, 213: 93. [12] 张月, 马宁, 王亚利, 等. 利用海藻酸钠自组装凝胶法制备 YSZ 多孔陶瓷. 硅酸盐学报, 2016, 44(6): 785. [13] JAMIL S M, OTHMAN M H D, RAHMAN M A,et al. Recent fabrication techniques for micro-tubular solid oxide fuel cell support: a review. Journal of the European Ceramic Society, 2015, 35(1): 1. [14] CHAI R Y, ZHANG Z, WANG M L, et al. Preparation of Ceria based metal supported solid oxide fuel cells by direct assembly method. Journal of Inorganic Materials, DOI: 10.15541/jim20240498. [15] SOYDAN A M, YILDIZ O, DURĞUN A,et al. Production, performance and cost analysis of anode-supported NiO-YSZ micro-tubular SOFCs. International Journal of Hydrogen Energy, 2019, 44(57): 30339. [16] SHAO X, WANG Z T, XU S S,et al. Microchannel structure of ceramic membranes for oxygen separation. Journal of the European Ceramic Society, 2016, 36(13): 3193. [17] DONG D H, SHAO X, XIE K, et al. Microchanneled anode supports of solid oxide fuel cells. Electrochemistry Communications, 2014, 42: 64. [18] DONG D H, SHAO X, HU X,et al. Improved gas diffusion within microchanneled cathode supports of SOECs for steam electrolysis. International Journal of Hydrogen Energy, 2016, 41(44): 19829. [19] YU L B, WANG J J, YE Z M,et al. Electrochemical conversion of CO2 over microchanneled cathode supports of solid oxide electrolysis cells. Journal of CO2 Utilization, 2018, 26: 179. [20] WANG T P, TIAN Y Y, LI T P,et al. Essential microstructure of cathode functional layers of solid oxide electrolysis cells for CO2 electrolysis. Journal of CO2 Utilization, 2019, 32: 214. [21] WANG T P, WANG R Z, XIE X Y,et al. Robust direct hydrocarbon solid oxide fuel cells with exsolved anode nanocatalysts. ACS Applied Materials & Interfaces, 2022, 14(51): 56735. [22] FAN D J, GAO Y, LIU F S,et al. Autothermal reforming of methane over an integrated solid oxide fuel cell reactor for power and syngas co-generation. Journal of Power Sources, 2021, 513: 230536. [23] ZHENG G Z, CHEN T, ZHANG G J,et al. High strength bilayer finger-like ceramic supported reversible solid oxide cells via phase inversion tape-casting technology. Journal of Power Sources, 2024, 599: 234232. [24] JIN C,LIU J,LI L H,et al. Electrochemical properties analysis of tubular NiO-YSZ anode-supported SOFCs fabricated by the phase inversion method. Journal of Membrane Science, 2009, 341(1/2): 233. [25] LIU T, WANG Y, ZHANG Y X,et al. Steam electrolysis in a solid oxide electrolysis cell fabricated by the phase-inversion tape casting method. Electrochemistry Communications, 2015, 61: 106. [26] HUANG H, LIN J, WANG Y L,et al. Facile one-step forming of NiO and yttrium-stabilized zirconia composite anodes with straight open pores for planar solid oxide fuel cell using phase-inversion tape casting method. Journal of Power Sources, 2015, 274: 1114. [27] HE W, LIU J J, CHEN C S,et al. Oxygen permeation modeling for Zr0.84Y0.16O1.92-La0.8Sr0.2Cr0.5Fe0.5O3-asymmetric membrane made by phase-inversion. Journal of Membrane Science, 2015, 491: 90. [28] DING R G, CUI S S, LIN J,et al. Improving the water splitting performance of nickel electrodes by optimizing their pore structure using a phase inversion method. Catalysis Science & Technology, 2017, 7(14): 3056. [29] SHI N, XIE Y, YANG Y,et al. Infiltrated Ni0.08Co0.02CeO2-x@Ni0.8Co0.2 catalysts for a finger-like anode in direct methane-fueled solid oxide fuel cells. ACS Applied Materials & Interfaces, 2021, 13(4): 4943. [30] ZHANG H L, CHEN T, HUANG Z H,et al. A cathode-supported solid oxide fuel cell prepared by the phase-inversion tape casting and impregnating method. International Journal of Hydrogen Energy, 2022, 47(43): 18810. [31] SHA Y H, LING Y H, YANG Y,et al. A finger-like anode with infiltrated Ni0.1Ce0.9O2-δ catalyst using new phase inversion combined tape-casting technology for optimized dry reforming of methane. Ceramics International, 2023, 49(17): 29155. [32] PAN Y X, PEI K, ZHOU Y C,et al. A straight, open and macro-porous fuel electrode-supported protonic ceramic electrochemical cell. Journal of Materials Chemistry A, 2021, 9(17): 10789. [33] DEVILLE S, SAIZ E, TOMSIA A P.Ice-templated porous alumina structures.Acta Materialia, 2007, 55(6): 1965. [34] SUN H B, CHEN Y, CHEN F L,et al. High-performance solid oxide fuel cells based on a thin La0.8Sr0.2Ga0.8Mg0.2O3-δ electrolyte membrane supported by a nickel-based anode of unique architecture. Journal of Power Sources, 2016, 301: 199. [35] LIU R P, XU T T, WANG C A.A review of fabrication strategies and applications of porous ceramics prepared by freeze-casting method.Ceramics International, 2016, 42(2): 2907. [36] GAUDILLERE C, SERRA J M.Freeze-casting: fabrication of highly porous and hierarchical ceramic supports for energy applications.Bulletin of the Spanish Society of Ceramics and Glass, 2016, 55(2): 45. [37] DU Y H, HEDAYAT N, PANTHI D, et al. Freeze-casting for the fabrication of solid oxide fuel cells: a review. Materialia, 2018, 1: 198. [38] BUNCH J, CHEN Y, CHEN F L, et al. Freeze‐tape casting for the design of anode‐delivery layer in solid oxide fuel cells//SINGH P, BANSAL N P, HALBIG M, et al. Advances in Solid Oxide Fuel Cells VIII. Hoboken: Wiley, 2012: 13-21. [39] CHEN Y, LIU Q, YANG Z B,et al. High performance low temperature solid oxide fuel cells with novel electrode architecture. RSC Advances, 2012, 2(32):12118. [40] SAMMES N M, DU Y, BOVE R.Design and fabrication of a 100 W anode supported micro-tubular SOFC stack.Journal of Power Sources, 2005, 145(2): 428. [41] HEDAYAT N, DU Y H, ILKHANI H,et al. Review on fabrication techniques for porous electrodes of solid oxide fuel cells by sacrificial template methods. Renewable and Sustainable Energy Reviews, 2017, 77: 1221. [42] HEDAYAT N, DU Y H, ILKHANI H.Pyrolyzable pore-formers for the porous-electrode formation in solid oxide fuel cells: a review.?Ceramics International, 2018, 44(5): 4561. [43] NISHIHORA R K, RACHADEL P L, QUADRI M G N,et al. Manufacturing porous ceramic materials by tape casting-a review. Journal of the European Ceramic Society, 2018, 38(4): 988. [44] WEI P, SOFIE S, ZHANG Q,et al. Metal supported solid oxide fuel cell by freeze tape casting, ECS Transactions, 2011, 35(1): 379. [45] HU L F, WANG C A, HUANG Y,et al. Control of pore channel size during freeze casting of porous YSZ ceramics with unidirectionally aligned channels using different freezing temperatures. Journal of the European Ceramic Society, 2010, 30(16): 3389. [46] CHEN Y, LIN Y, ZHANG Y X,et al. Low temperature solid oxide fuel cells with hierarchically porous cathode nano-network. Nano Energy, 2014, 8: 25. [47] XUE W J, SUN Y, HUANG Y,et al. Preparation and properties of porous alumina with highly ordered and unidirectional oriented pores by a self-organization process. Journal of the American Ceramic Society, 2011, 94(7): 1978. [48] LONG M L, MA N, YANG J L.Preparation of unidirectional aligned alumina ceramics with micron pores.Journal of the Chinese Chemical Society, 2014, 42(3): 261. [49] ZHANG Y, MA N, WANG L Y,et al. Preparation of unidirectional porous yttria-stabilized zirconia ceramics by an alginate self-assemble method. Journal of the Chinese Ceramic Society, 2016, 44(6): 785. [50] 郭祥, 田彦婷, 吴萍萍, 等. 直通孔陶瓷在固体氧化物燃料电池中的应用. 硅酸盐学报, 2020, 48(6): 887. [51] CHANG H, YAN J, CHEN H L,et al. Preparation of thin electrolyte film via dry pressing/heating/quenching/calcining for electrolyte-supported SOFCs. Ceramics International, 2019, 45(8): 9866. [52] 吴萍萍, 田彦婷, 郭祥, 等. 直孔阳极支撑体及阳极功能层的制备方法及其单电池性能. 硅酸盐学报, 2021, 49(7): 1493. [53] ELJAOUHARI A A, MULLER R, KELLERMEIER M,et al. New anisotropic ceramic membranes from chemically fixed dissipative structures. Langmuir, 2006, 22(26): 11353. [54] SUZUKI T, YAMAGUCHI T, FUJISHIRO Y,et al. Improvement of SOFC performance using a microtubular, anode-supported SOFC. Journal of The Electrochemical Society, 2006, 153(5): A925. [55] YANG N T, TAN X Y, MA Z F.A phase inversion/sintering process to fabricate nickel/yttria-stabilized zirconia hollow fibers as the anode support for micro-tubular solid oxide fuel cells.Journal of Power Sources, 2008, 183(1): 14. [56] LAWLOR V, GRIESSER S, BUCHINGER G,et al. Review of the micro-tubular solid oxide fuel cell: Part I. Stack design issues and research activities. Journal of Power Sources, 2009, 193(2): 387. [57] RAHMAN A M, OTHMAN M H D, FANSURI H,et al. Development of high-performance anode/electrolyte/cathode micro-tubular solid oxide fuel cell via phase inversion-based co-extrusion/co-sintering technique. Journal of Power Sources, 2020, 467: 228345. [58] LU X K, LI T, BERTEI A,et al. The application of hierarchical structures in energy devices: new insights into the design of solid oxide fuel cells with enhanced mass transport. Energy & Environmental Science, 2018, 11(9): 2390. [59] LI T, LU X K, RABUNI M F,et al. High-performance fuel cell designed for coking-resistance and efficient conversion of waste methane to electrical energy. Energy & Environmental Science, 2020, 13(6): 1879. [60] JARDIEL T, LEVENFELD B, JIMENEZ R,et al. Fabrication of 8-YSZ thin-wall tubes by powder extrusion moulding for SOFC electrolytes. Ceramics International, 2009, 35(6): 2329. [61] MENG X X, YAN W, YANG N T,et al. Highly stable microtubular solid oxide fuel cells based on integrated electrolyte/anode hollow fibers. Journal of Power Sources, 2015, 275: 362. [62] HOU M Y, ZHU F, LIU Y,et al. A high-performance fuel electrode-supported tubular protonic ceramic electrochemical cell. Journal of the European Ceramic Society, 2023, 43(14): 6200. [63] ZHANG L, HE H Q, KWEK W R,et al. Fabrication and characterization of anode‐supported tubular solid‐oxide fuel cells by slip casting and dip coating techniques. Journal of the American Ceramic Society, 2009, 92(2): 302. [64] CHEN C C, DONG Y, LI L,et al. Electrochemical properties of micro-tubular intermediate temperature solid oxide fuel cell with novel asymmetric structure based on BaZr0.1Ce0.7Y0.1Yb0.1O3-δ proton conducting electrolyte. International Journal of Hydrogen Energy, 2019, 44(31): 16887. [65] PAN Y X, ZHANG H, XU K,et al. A high-performance and durable direct NH3 tubular protonic ceramic fuel cell integrated with an internal catalyst layer. Applied Catalysis, B, 2022, 306: 121071. [66] YANG C H, JIN C, CHEN F L.Performances of micro-tubular solid oxide cell with novel asymmetric porous hydrogen electrode.Electrochimica Acta, 2010, 56(1): 80. [67] LIN Q Y, LIN J, LIU T,et al. Solid oxide fuel cells supported on cathodes with large straight open pores and catalyst-decorated surfaces. Solid State Ionics, 2018, 323: 130. [68] CHEN X, WANG J T, YU N,et al. A robust direct-propane solid oxide fuel cell with hierarchically oriented full ceramic anode consisting with in-situ exsolved metallic nano-catalysts. Journal of Membrane Science, 2023, 677: 121637. [69] CAO J W, LI Y F, ZHENG Y,et al. A novel solid oxide electrolysis cell with micro-/nano channel anode for electrolysis at ultra‐high current density over 5 A cm-2. Advanced Energy Materials, 2022, 12(28): 2200899. [70] LIU F S, CHEN Z P, ZHOU H H,et al. Highly efficient CH4-assisted CO2 electrolysis for syngas production in a quasi-symmetric Ni-ceramic electrolyzer. Journal of Power Sources, 2024, 609: 234703. [71] LIU F S, WANG T P, LI J J,et al. Elevated-temperature bio-ethanol-assisted water electrolysis for efficient hydrogen production. Chemical Engineering Journal, 2022, 434: 134699. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | WAN Junchi, DU Lulu, ZHANG Yongshang, LI Lin, LIU Jiande, ZHANG Linsen. Structural Evolution and Electrochemical Performance of Na4FexP4O12+x/C Cathode Materials for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(5): 497-503. |
[8] | XUE Ke, CAI Changkun, XIE Manyi, LI Shuting, AN Shengli. Pr1+xBa1-xFe2O5+δ Cathode Materials for Solid Oxide Fuel Cells: Preparation and Electrochemical Performance [J]. Journal of Inorganic Materials, 2025, 40(4): 363-371. |
[9] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[10] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[11] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[12] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[13] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[14] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[15] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||