Journal of Inorganic Materials
YUAN Long1, JIA Ru1, YUAN Meng1,2, ZHANG Jian2, DUAN Yu2, MENG Xiang-dong1
Received:
2025-01-16
Revised:
2025-02-18
Contact:
MENG Xiang Dong, professor. E-mail: xdmeng@jlnu.edu.cn
About author:
YUAN Long, associate professor. E-mail: yuanlong@jlnu.edu.cn
Supported by:
CLC Number:
YUAN Long, JIA Ru, YUAN Meng, ZHANG Jian, DUAN Yu, MENG Xiang-dong. X-ray Induced Photochromic Materials, Mechanism and Application[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250025.
[1] GLASS B.The genetic hazards of nuclear radiations.Science, 1957, 126(3267): 241. [2] DU M H, WANG J, XU S J,et al. Super-elastic scintillating fibers and fabrics for efficient and visual radiation detection. Adv. Fiber Mater., 2023, 5(4): 1493. [3] LUO Z C, WU Y Y, WANG Y A,et al. Clinical radiation dose verification by topographic persistent luminescence dosimetry. Nano Today, 2023, 50: 101854. [4] CAO C T, TONEY M F, SHAM S K,et al. Emerging X-ray imaging technologies for energy materials. Materials Today, 2020, 34: 132. [5] HAN J S, LEE S H, GO H, et al. High-performance cold cathode X-ray tubes using a carbon nanotube field electron emitter. Acs Nano, 2022, 16(7): 10231. [6] NAKAJIMA T, MURAYAMA Y, MATSUZAWA T, et al. Development of a new highly sensitive LiF thermoluminescence dosimeter and its applications. Nucl. Instrum. Methods, 1978, 157(1): 155. [7] ZHANG H, YANG Z, ZHOU M,et al. Reproducible X-ray imaging with a perovskite nanocrystal scintillator embedded in a transparent amorphous network structure. Adv. Mater., 2021, 33(40): 2102529. [8] COLETTE D, MAZON D, BARNSLEY R, et al. Conceptual study of energy resolved x-ray measurement and electron temperature reconstruction on ITER with low voltage ionization chambers. Rev. Sci. Instrum., 2021, 92(8): 083511. [9] PAN L, LIU Z F, WELTON C, et al. Ultrahigh-flux X-ray detection by a Solution-grown Perovskite CsPbBr3 Single-crystal semiconductor detector. Adv Mater, 2023, 35(25): 2211840. [10] THIRIMANNE H M, JAYAWARDENA K, PARNELL A J, et al. High sensitivity organic inorganic hybrid X-ray detectors with direct transduction and broadband response. Nat Commun, 2018, 9: 2926. [11] LEISTNER A L, PIANOWSKI Z L.Smart photochromic materials triggered with visible light.European Journal of Organic Chemistry, 2022, 2022(19): e202101271. [12] BEAUMONT J, HART M.Multiple Bragg reflection monochromators for synchrotron X radiation.Journal of Physics E: Scientific Instruments, 1974, 7(10): 823. [13] KAYANI A B, KURIAKOSE S, MONSHIPOURI M,et al. UV photochromism in transition metal oxides and hybrid materials. Small, 2021, 17(32): 2100621. [14] WANG X, SHI H F, MA H L,et al. Organic phosphors with bright triplet excitons for efficient X-ray-excited luminescence. Nat. Photonics, 2021, 15(3): 187. [15] KAWAMURA I, KAWAMOTO H, FUJIMOTO Y,et al. Isomerization behavior of diarylethene-type photochromic compounds under X-ray irradiation: application to dosimetry. Jpn. J. Appl. Phys., 2020, 59(4): 046004. [16] YANG D D, ZHENG H W, XUE J H,et al. Effect of lattice water on the photochromic property/photochromism of a Zn(II)-viologen coordination polymers. Journal of Molecular Structure, 2024, 1311: 138340. [17] WU J, TAO C, LI Y,et al. Methylviologen-templated layered bimetal phosphate: a multifunctional X-ray-induced photochromic material. Chem. Sci., 2014, 5(11): 4237. [18] HAN Y-F, XU X-M, WANG S-H, et al. Reusable radiochromic semiconductive MOF for dual-mode X-ray detection using color change and electric signal. Chem. Eng. J., 2022, 437: 135468. [19] LU L, PENG S C, ZHAO L,et al. Visualized X-ray dosimetry for multienvironment applications. Nano Lett., 2023, 23(18): 8753. [20] YUAN M, JIA R, JIANG X, et al. Room-temperature X-ray induced photochromic properties of tungsten oxide. Mater. Lett., 2023, 349: 134688. [21] YANG Z, HU J, VAN DER HEGGEN D, et al. A versatile photochromic dosimeter enabling detection of X‐ray, ultraviolet, and visible photons. Laser & Photonics Reviews, 2023, 17(5): 2200809. [22] LIU J, LU Y, LI J,et al. UV and X-ray dual photochromic properties of three CPs based on a new viologen ligand. Dyes Pigm., 2020, 177: 108276. [23] LIU J, LU Y, LU W.Sun, UV and X-ray triple photochromic properties of three coordination polymers based on 1, 1′-bis (3-carboxylatobenzyl)-4, 4′-bipyridinium ligand.CrystEngComm, 2020, 22(12): 2121. [24] ASAI K, KOSHIMIZU M, FUJIMOTO Y.Isomerization behavior of spiropyran-based compounds upon X-ray irradiation.Radiat Meas, 2017, 106: 166. [25] DU J, YANG Z, LIN H,et al. Inorganic photochromic materials: Recent advances, mechanism, and emerging applications. Responsive Materials, 2024, 2(2): e20240004. [26] LIU L, HU H, PAN W,et al. Robust organogel scintillator for self‐healing and ultra‐flexible X‐ray imaging. Adv. Mater., 2024, 36(13): 2311206. [27] GUO P-Y, SUN C, ZHANG N-N,et al. An inorganic-organic hybrid photochromic material with fast response to hard and soft X-rays at room temperature. Chem Commun, 2018, 54(36): 4525. [28] ZHANG F, ZHOU Y C, CHEN Z P,et al. Large-area X-Ray scintillator screen based on cesium hafnium chloride microcrystals films with high sensitivity and stability. Laser Photonics Rev., 2023, 17(5): 2200848. [29] SUN F, XU H, HONG W,et al. 2D CuInP2Se6 in high‐sensitivity UV‐vis and X‐ray detection. Adv. Funct. Mater., 2024, 34(22): 2313776. [30] BYRON H C, SWAIN C, PATURI P,et al. Highly tuneable photochromic sodalites for dosimetry, security marking and imaging. Adv. Funct. Mater., 2023, 33(42): 2303398. [31] SAMOILENKO Y, KAGANOVSKII Y, LIPOVSKII A,et al. CW laser discoloration of X-ray irradiated silver doped silicate glasses. Opt. Mater., 2008, 30(11): 1715. [32] YUAN W, NIU G, XIAN Y,et al. In situ regulating the order-disorder phase transition in Cs2AgBiBr6 single crystal toward the application in an X‐ray detector. Adv. Funct. Mater., 2019, 29(20): 1900234. [33] TANG H T, LIU S B, FANG Z H,et al. High-resolution X-ray time-lapse imaging from fluoride nanocrystals embedded in glass matrix. Advanced Optical Materials, 2022, 10(12): 2102836. [34] SONG Y, ZHAO H, ZI Y,et al. X-ray-irradiation-induced discoloration and persistent radioluminescence for reversible dual-mode imaging and detection applications. ACS Energy Lett., 2023, 8(5): 2232. [35] ZHANG H, YANG Z, ZHOU M,et al. Reproducible X‐ray imaging with a perovskite nanocrystal scintillator embedded in a transparent amorphous network structure. Adv. Mater., 2021, 33(40): 2102529. [36] HU Y, SUN Y, HOU S,et al. UV and X-ray induced photochromic material based on defect state exchanges. Chem. Eng. J., 2024, 495: 153600. [37] OU X, QIN X, HUANG B,et al. High-resolution X-ray luminescence extension imaging. Nature, 2021, 590(7846): 410. [38] ZUO J, KEIL P, GRUNDMEIER G.Synthesis and characterization of photochromic Ag-embedded TiO2 nanocomposite thin films by non-reactive RF-magnetron sputter deposition.Appl. Surf. Sci., 2012, 258(18): 7231. [39] HOLTON W C.Paramagnetic resonance of F centers in alkali halides.Phys. Rev., 1962, 125(1): 89. [40] SEITZ F.Color centers in alkali halide crystals.Rev. Mod. Phys., 1946, 18(3): 384. [41] BYRON H C, SWAIN C, LASTUSAARI P P C R H L B. Highly tuneable photochromic sodalites for dosimetry, security marking and imaging.Adv. Funct. Mater., 2023, 33(42): 2303389. [42] SONG Y Y, ZHAO H P, ZI Y Z,et al. X-ray-irradiation-induced discoloration and persistent radioluminescence for reversible dual-mode imaging and detection applications. ACS Energy Lett., 2023, 8(5): 2232. [43] HOYA J, LABORDE J I, RICHARD D, et al. Destabilisation of nanoporous membranes through GB grooving and grain growth. Comput. Mater. Sci., 2017, 139: 1. [44] ZHU Y, SUN H Q, JIA Q N, et al. Site-selective occupancy of Eu2+ toward high luminescence switching contrast in BaMgSiO4-based photochromic materials. Adv. Opt. Mater., 2021, 9(6): 2001626. [45] JIN Y H, HU Y H, YUAN L F,et al. Multifunctional near-infrared emitting Cr3+-doped Mg4Ga8Ge2O20 particles with long persistent and photostimulated persistent luminescence, and photochromic properties. J. Mater. Chem. C, 2016, 4(27): 6614. [46] RABIN H, KLICK C C.Formation of F centers at low and room temperatures.Phys. Rev., 1960, 117(4): 1005. [47] ROY R.ChemInform abstract: ceramics by the solution‐sol‐gel route.ChemInform, 1988, 19(18): 1664. [48] BAI X, XU Z, ZI Y Z,et al. Dual-functional X-ray photochromic phosphor: high-performance detection and 3D imaging. Adv. Funct. Mater., 2024, 34(37): 2402452. [49] PATHAK N, GUPTA S K, GHOSH P S, et al. Probing local site environments and distribution of manganese in SrZrO3:Mn; PL and EPR spectroscopy complimented by DFT calculations. RSC Adv., 2015, 5(23): 17501. [50] ZHANG Y Y, LUO L H, LI K X, et al. Reversible up- conversion luminescence modulation based on UV- VIS light- controlled photochromism in Er3+doped Sr2SnO4. J. Mater. Chem. C, 2018, 6(48): 13148. [51] LEE S H, CHEONG H M, LIU P,et al. Raman spectroscopic studies of gasochromic a-WO3 thin films. Electrochimica Acta, 2001, 46(13/14): 1995. [52] YUAN M, JIA R, JIANG X,et al. Room-temperature X-ray induced photochromic properties of tungsten oxide. Mater. Lett., 2023, 349: 134688. [53] HE Y, WU Z, FU L,et al. Photochromism and size effect of WO3 and WO3-TiO2 aqueous sol. Chem. Mater., 2003, 15(21): 4039. [54] EGRANOV A, SIZOVA T Y, SHENDRIK R Y,et al. Instability of some divalent rare earth ions and photochromic effect. Journal of Physics and Chemistry of Solids, 2016, 90: 7. [55] SCOULER W, SMAKULA A.Coloration of pure and doped calcium fluoride crystals at 20 ℃ and -190 ℃.Physical Review, 1960, 120(4): 1154. [56] LU L, PENG S, ZHAO L,et al. Visualized X-ray dosimetry for multienvironment applications. Nano Letters, 2023, 23(18): 8753. [57] SUN Y H, LI C L, WANG W F,et al. A photochromic and scintillation Eu-MOF with visual X-ray detection in bright and dark environments. Chem. Commun., 2022, 58(25): 4056. [58] JIN Y, HU Y, YUAN L,et al. Multifunctional near-infrared emitting Cr3+-doped Mg4Ga8Ge2O20 particles with long persistent and photostimulated persistent luminescence, and photochromic properties. J. Mater. Chem. C, 2016, 4(27): 6614. [59] COLETTE D, MAZON D, BARNSLEY R,et al. Conceptual study of energy resolved X-ray measurement and electron temperature reconstruction on ITER with low voltage ionization chambers. Rev. Sci. Instrum., 2021, 92(8): 083511. [60] PAN L, LIU Z, WELTON C,et al. Ultrahigh‐flux X‐ray detection by a solution‐grown perovskite CsPbBr3 single‐crystal semiconductor detector. Adv. Mater., 2023, 35(25): 2211840. [61] YANG L, ZHANG H, ZHOU M,et al. High-stable X-ray imaging from all-inorganic perovskite nanocrystals under a high dose radiation. J. Phys. Chem. Lett., 2020, 11(21): 9203. [62] LIU J, SHABBIR B, WANG C,et al. Flexible, printable soft‐X‐ray detectors based on all‐inorganic perovskite quantum dots. Adv. Mater., 2019, 31(30): 1901644. [63] ZHANG Y, SUN R, OU X,et al. Metal halide perovskite nanosheet for X-ray high-resolution scintillation imaging screens. ACS Nano, 2019, 13(2): 2520. [64] LI L Q, TAO L T, WANG L X, et al. Monolithic integration of perovskite heterojunction on TFT backplanes through vapor deposition for sensitive and stable X-ray imaging. Sci. Adv., 2024, 10(17): eadj8659. [65] ZHAO J, ZHAO L, DENG Y,et al. Perovskite-filled membranes for flexible and large-area direct-conversion X-ray detector arrays. Nat. Photonics, 2020, 14(10): 612. [66] LI W, XU Y, PENG J, et al. Evaporated perovskite thick junctions for X-ray detection. ACS Appl. Mater. Interfaces, 2021, 13(2): 2971-2978. [67] QIAN W, XU X, WANG J,et al. An aerosol-liquid-solid process for the general synthesis of halide perovskite thick films for direct-conversion X-ray detectors. Matter, 2021, 4(3): 942. [68] LIU L, LI W, FENG X, et al. Energy transfer assisted fast X‐ray detection in direct/indirect hybrid perovskite wafer. Adv. Sci., 2022, 9(15): 2103735. [69] XIA M L, SONG Z H, WU H D,et al. Compact and large-area perovskite films achieved via soft-pressing and multi-functional polymerizable binder for flat-panel X-ray imager. Adv. Funct. Mater., 2022, 32(16): 2110729. [70] DEUMEL S, VAN BREEMEN A, GELINCK G,et al. High-sensitivity high-resolution X-ray imaging with soft-sintered metal halide perovskites. Nat. Electron., 2021, 4(9): 681. [71] DU X Y, LIU Y M, PAN W C,et al. Chemical potential diagram guided rational tuning of electrical properties: a case study of CsPbBr3 for X-ray detection. Adv. Mater., 2022, 34(17): 2110252. [72] ZHOU Y, ZHAO L, NI Z Y, et al. Heterojunction structures for reduced noise in large-area Heterojunction structures for reduced noise in large-area and sensitive perovskite X-ray detectors. Sci. Adv., 2021, 7(36): eabg6716. [73] CHEN C, SUN J K, ZHANG Y J,et al. Flexible viologen‐based porous framework showing X‐ray induced photochromism with single‐crystal‐to‐single‐crystal transformation. Angew Chem., 2017, 129(46): 14650. [74] LU H, XIE J, WANG X Y,et al. Visible colorimetric dosimetry of UV and ionizing radiations by a dual-module photochromic nanocluster. Nat. Commun., 2021, 12(1): 2798. [75] YANG Z, HU J, VAN DER HEGGEN D,et al. A versatile photochromic dosimeter enabling detection of X‐Ray, ultraviolet, and visible photons. Laser Photonics Rev., 2023, 17(5): 2200809. [76] ZHANG F, ZHOU Y, CHEN Z,et al. Large‐area X‐ray scintillator screen based on cesium hafnium chloride microcrystals films with high sensitivity and stability. Laser Photonics Rev., 2023, 17(5): 2200848. [77] ABDOLLAHI A, ROGHANI-MAMAQANI H, RAZAVI B,et al. Photoluminescent and chromic nanomaterials for anticounterfeiting technologies: recent advances and future challenges. ACS Nano, 2020, 14(11): 14417. [78] BAR N, CHOWDHURY P.A brief review on advances in rhodamine B based chromic materials and their prospects.ACS Appl. Electron. Mater., 2022, 4(8): 3749. [79] WUTTIG M, YAMADA N.Phase-change materials for rewriteable data storage.Nat. Mater., 2007, 6(11): 824. [80] SUN H Q, LI X F, ZHU Y, et al. Achieving multicolor emission readout and tunable photoswitching via multiplexing of dual lanthanides in ferroelectric oxides. J. Mater. Chem. C, 2019, 7(19): 5782. [81] YANG Z, DU J, MARTIN L I,et al. Designing photochromic materials with large luminescence modulation and strong photochromic efficiency for dual‐mode rewritable optical storage. Adv. Opt. Mater., 2021, 9(20): 2100669. [82] LI X, GUAN L, LI Y,et al. Optical control of Er3+-doped M0.5Bi2.5Nb2O9(M = Li, Na, K) materials for thermal stability and temperature sensing using photochromic reactions. J. Mater. Chem. C, 2020, 8(44): 15685. [83] SONG Y Y, ZHAO H P, ZI Y Z,et al. X-ray-irradiation-induced discoloration and persistent radioluminescence for reversible dual-mode imaging and detection applications. ACS Energy Lett., 2023, 8(5): 2232. [84] ZHANG H, ZHANG X, SUN W,et al. All‐solid‐state transparent variable infrared emissivity devices for multi‐mode smart windows. Adv. Funct. Mater., 2024, 34(16): 2307356. [85] CHOI K, CHON J W, GU M,et al. Low‐distortion holographic data storage media using free‐radical ring‐opening polymerization. Adv. Funct. Mater., 2009, 19(22): 3560. [86] XIAO Y, XIONG P, ZHANG S, et al. Cation-defect-induced self-reduction towards efficient mechanoluminescence in Mn2+-activated perovskites. Mater. Horiz., 2023, 10(9): 3476. |
[1] | DONG Siyin, TIE Shujie, YUAN Ruihan, ZHENG Xiaojia. Research Progress on Low-dimensional Halide Perovskite Direct X-ray Detectors [J]. Journal of Inorganic Materials, 2023, 38(9): 1017-1030. |
[2] | LI Qianli, LI Naixin, LI Yucheng, LIU Shenye, CHENG Shuai, YANG Guang, REN Kuan, WANG Feng, ZHAO Jingtai. Research Progress of Radio-photoluminescence Materials and Their Applications [J]. Journal of Inorganic Materials, 2023, 38(7): 731-749. |
[3] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[4] | ZHANG Shouchao, CHEN Hongyu, LIU Hongfei, YANG Yu, LI Xin, LIU Defeng. High Temperature Recovery of Neutron Irradiation-induced Swelling and Optical Property of 6H-SiC [J]. Journal of Inorganic Materials, 2023, 38(6): 678-686. |
[5] | ZHOU Yuzhu, ZHANG Youkui, SONG Li. Noble Metal Phosphide Electrocatalysts and Their Synchrotron-based X-ray Absorption Spectroscopy [J]. Journal of Inorganic Materials, 2021, 36(3): 225-244. |
[6] | LI Shufang, ZHAO Shuang, LI Manrong. Flux Growth of Tungsten Oxychloride Li23CuW10O40Cl5 [J]. Journal of Inorganic Materials, 2020, 35(7): 834-838. |
[7] | CHENG Guo-Feng, RUAN Yin-Jie, SUN Yue, YIN Han-Di, XIE Qi-Yun. Stoichiometric Ratio on Phase Transformation in Reaction Sintering of BiFeO3 Ceramics Study: a High Temperature X-ray Diffraction Study [J]. Journal of Inorganic Materials, 2019, 34(10): 1035-1040. |
[8] | LI Feng-Rui, GU Mu, HE Hui, CHANG Li-Hua, WEN Wei-Feng, LI Ze-Ren, CHEN Liang, LIU Jin-Liang, OUYANG Xiao-Ping, LIU Xiao-Lin, LIU Bo, HUANG Shi-Ming,NI Chen. Fluorescent Decay Time and Energy Response of γ-CuI Crystal [J]. Journal of Inorganic Materials, 2017, 32(2): 163-168. |
[9] | HU Chen, LIU Shu-Ping, FENG Zhao-Dong, QIN Xiu-Bo, SHI Yun, PAN Yu-Bai. Flat Panel X-ray Imaging of LuAG:Ce,Mg Ceramic Scintillators [J]. Journal of Inorganic Materials, 2015, 30(8): 814-818. |
[10] | CUI Ying-Xin, XU Ming-Sheng, XU Xian-Gang, HU Xiao-Bo. High Resolution X-ray Diffraction Analysis of Defect Density of Gallium Nitride Epitaxial Layer [J]. Journal of Inorganic Materials, 2015, 30(10): 1094-1098. |
[11] | SUN Dan-Dan, PAN Shang-Ke, REN Guo-Hao, WU Yun-Tao, SHANG Shan-Shan, ZHANG Guo-Qing. Luminescence Properties of High Y3+-doped Ce:Li6Lu(BO3)3 Scintillators [J]. Journal of Inorganic Materials, 2013, 28(9): 987-991. |
[12] | LIN Chu-Cheng, ZHU Hui-Ying, MASAO Matsuyama, WANG Hu, HUANG Li-Ping, ZHENG Xue-Bin, ZENG Yi. Characterization of Tritium Retention in Plasma Sprayed B4C/Mo Coatings [J]. Journal of Inorganic Materials, 2013, 28(9): 1040-1044. |
[13] | WANG Yong-Zhe, WU Wei, HUA Jia-Jie, ZENG Yi, ZHENG Xue-Bin, ZHOU Ying, WANG Hu. Microstructure Characterization and Thermal Conductivity Analysis of Plasma Sprayed ZrO2 Coatings [J]. Journal of Inorganic Materials, 2012, 27(5): 550-554. |
[14] | JIN Jing, ZHANG Xin-Yi, ZHOU Ying-Xue. Soft X-ray Emission Spectra of Mn-doped ZnO Thin Films [J]. Journal of Inorganic Materials, 2012, 27(3): 296-300. |
[15] | HUANG Zhan-Yun, LUO Ping, CHEN Di-Hu. Preparation and Hemocompatibility of Neodymium Incorporated Zinc Oxide Thin Films [J]. Journal of Inorganic Materials, 2011, 26(9): 993-997. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||