Journal of Inorganic Materials ›› 2025, Vol. 40 ›› Issue (9): 964-970.DOI: 10.15541/jim20250051
• RESEARCH ARTICLE • Previous Articles Next Articles
ZHONG Weimin1(), ZHAO Ke2, WANG Kewei3, LIU Dianguang4, LIU Jinling1(
), AN Linan3
Received:
2025-02-11
Revised:
2025-04-01
Published:
2025-09-20
Online:
2025-04-09
Contact:
LIU Jinling, professor. E-mail: liujinling@swjtu.edu.cnAbout author:
ZHONG Weimin (2000-), male, Master candidate. E-mail: 2772759347@qq.com
Supported by:
CLC Number:
ZHONG Weimin, ZHAO Ke, WANG Kewei, LIU Dianguang, LIU Jinling, AN Linan. Effect of Oscillatory Pressure Amplitude on Microstructures and Wear Resistance of Tungsten Carbide[J]. Journal of Inorganic Materials, 2025, 40(9): 964-970.
Fig. 4 Relative densities and fracture morphologies of WC samples prepared under different pressure amplitudes (a) Histogram of relative density against pressure for WC samples; (b-d) Fracture morphologies of WC samples prepared under (b) 80, (c) (70±10), and (d) (60±20) MPa
Fig. 5 Diagrams of grain orientations (up) and grain size distributions (down) for WC samples prepared under different pressure amplitudes (a) 80 MPa; (b) (70±10) MPa; (c) (60±20) MPa. Colorful figures are available on website
Fig. 6 (a-c) Statistical diagrams of grain misorientation angle and (d) variation in fraction of low angle grain boundary (LAGB) and Σ2 grain boundary for WC samples prepared under different pressure amplitudes
Fig. 7 (a-c) KAM maps, (d) dislocation densities, and (e) statistical diagrams of KAM angle for WC samples prepared under different pressure amplitudes (a) 80 MPa; (b) (70±10) MPa; (c) (60±20) MPa. HAGB: high angle grain boundary. Colorful figures are available on website
Fig. 8 Tribological properties of WC samples prepared under different pressure amplitudes (a) Friction coefficient as a function of time; (b) Average friction coefficient and wear rate vs. pressure; (c) Wear scar depth vs. width
Fig. 10 Morphology and element characterization of adhesive phase of WC sample prepared under pressure amplitude of 10 MPa (a) SEM image; (b-e) EDS mappings corresponding to (a); (f) EDS spectrum corresponding to point in (a) marked with + symbol
Fig. S2 Three-dimensional surface topographies of WC samples prepared under different pressure amplitudes (a) 80 MPa; (b) (70±10) MPa; (c) (60±20) MPa
[1] | SUN J L, ZHAO J, HUANG Z F, et al. A review on binderless tungsten carbide: development and application. Nano-Micro Letters, 2020, 12: 162. |
[2] | REN X Y, MIAO H Z, PENG Z J. A review of cemented carbides for rock drilling: an old but still tough challenge in geo-engineering. International Journal of Refractory Metals and Hard Materials, 2013, 39: 61. |
[3] | KORNAUS K, RACZKA M, GUBERNAT A, et al. Pressureless sintering of binderless tungsten carbide. Journal of the European Ceramic Society, 2017, 37(15): 4567. |
[4] | GUBERNAT A, RUTKOWSKI P, GRABOWSKI G, et al. Hot pressing of tungsten carbide with and without sintering additives. International Journal of Refractory Metals and Hard Materials, 2014, 43: 193. |
[5] | ANDERSON K P, WOLLMERSHAUSER J A, RYOU H, et al. Nanostructural effects beyond Hall-Petch: towards superhard tungsten carbide. Acta Materialia, 2024, 275: 120004. |
[6] | SHON I J, KIM B R, DOH J M, et al. Properties and rapid consolidation of ultra-hard tungsten carbide. Journal of Alloys and Compounds, 2010, 489(1): L4. |
[7] | KUMAR A K N, WATABE M, KUROKAWA K. The sintering kinetics of ultrafine tungsten carbide powders. Ceramics International, 2011, 37(7): 2643. |
[8] | 邹芹, 李爽, 李艳国. 无粘结相WC硬质合金的研究进展. 硬质合金, 2021, 38(4): 297. |
[9] | MAZO I, MOLINARI A, SGLAVO V M. Electrical resistance flash sintering of tungsten carbide. Materials & Design, 2022, 213: 110330. |
[10] |
LIU J L, LIU D G, REN K, et al. Research progress on the flash sintering mechanism of oxide ceramics and its application. Journal of Inorganic Materials, 2022, 37(5): 473.
DOI |
[11] | HUANG B, CHEN L D, BAI S Q. Bulk ultrafine binderless WC prepared by spark plasma sintering. Scripta Materialia, 2006, 54(3): 441. |
[12] | ZHAO J F, HOLLAND T, UNUVAR C, et al. Sparking plasma sintering of nanometric tungsten carbide. International Journal of Refractory Metals & Hard Materials, 2009, 27(1): 130. |
[13] | CHA S I, HONG S H. Microstructures of binderless tungsten carbides sintered by spark plasma sintering process. Materials Science and Engineering A, 2003, 356(1/2): 381. |
[14] | LANTSEV E, MALEKHONOVA N, NOKHRIN A, et al. Influence of oxygen on densification kinetics of WC nanopowders during SPS. Ceramics International, 2021, 47(3): 4294. |
[15] | MA D J, KOU Z L, LIU Y J, et al. Sub-micro binderless tungsten carbide sintering behavior under high pressure and high temperature. International Journal of Refractory Metals & Hard Materials, 2016, 54: 427. |
[16] | GRASSO S, POETSCHKE J, RICHTER V, et al. Low-temperature spark plasma sintering of pure nano WC powder. Journal of the American Ceramic Society, 2013, 96(6): 1702. |
[17] | XIE Z P, LI S, AN L N. A novel oscillatory pressure-assisted hot pressing for preparation of high-performance ceramics. Journal of the American Ceramic Society, 2014, 97(4): 1012. |
[18] | ZHAO K, ZHONG W M, SUN M Y, et al. Sintering mechanism of pure B4C ceramic prepared by hot oscillating pressing and with excellent mechanical properties. Advanced Engineering Materials, 2024, 26(16): 2400695. |
[19] | WANG K W, ZHAO K, LIU J L, et al. Interplay of microstructure and mechanical properties of WC-6Co cemented carbides by hot oscillating pressing method. Ceramics International, 2021, 47(14): 20731. |
[20] | LIU D G, FAN J Y, ZHAO K, et al. Preparation of super-strong ZrO2 ceramics using dynamic hot forging. Journal of the European Ceramic Society, 2023, 43(2): 733. |
[21] | ZHAO K, FENG P Z, TAN J, et al. A new route to fabricate high- performance binderless tungsten carbide: dynamic sinter forging. Journal of the American Ceramic Society, 2023, 106(6): 3343. |
[22] | HE Z B, CHEN F, LIU D G, et al. Sintering behavior of simulating core FCM fuel via hot oscillatory pressing. Journal of Inorganic Materials, 2024, 39(5): 501. |
[23] | 张渤涛, 姚曙, 范建业, 等. 电场辅助动态热锻制备超高韧3YSZ陶瓷. 粉末冶金材料科学与工程, 2024, 29(4): 290. |
[24] | FOX R T, NILSSON R. Binderless tungsten carbide carbon control with pressureless sintering. International Journal of Refractory Metals & Hard Materials, 2018, 76: 82. |
[25] | POETSCHKE J, RICHTER V, MICHAELIS A. Fundamentals of sintering nanoscaled binderless hardmetals. International Journal of Refractory Metals and Hard Materials, 2015, 49: 124. |
[26] | PORZ L. 60 years of dislocations in ceramics: a conceptual framework for dislocation mechanics in ceramics. International Journal of Ceramic Engineering & Science, 2022, 4(4): 214. |
[27] | ZHAO M J, ZHU Q Q, ZOU J, et al. Binderless nanocrystalline tungsten carbide with enhanced hardness induced by high-pressure sintering. Journal of the European Ceramic Society, 2024, 44(8): 4875. |
[28] | DONG H F, LI B Z, LIU B B, et al. Extraordinary high- temperature mechanical properties in binder-free nanopolycrystalline WC ceramic. Journal of Materials Science & Technology, 2022, 97: 169. |
[29] | WANG H B, LOU H Z, XING M, et al. Exploring the origin of wear in cemented carbides via molecular dynamics simulations. International Journal of Refractory Metals and Hard Materials, 2024, 118: 106476. |
[30] | SALEM M N, DING K, RӦDEL J, et al. Thermally enhanced dislocation density improves both hardness and fracture toughness in single-crystal SrTiO3. Journal of the American Ceramic Society, 2023, 106: 1344. |
[31] | XU H Y, JI W, GUO W M, et al. Enhanced mechanical properties and oxidation resistance of zirconium diboride ceramics via grain-refining and dislocation regulation. Advanced Science, 2022, 9(6): 2104532. |
[32] | MISHRA M, TANGPATJAROEN C, SZLUFARSKA I. Plasticity- controlled friction and wear in nanocrystalline SiC. Journal of the American Ceramic Society, 2014, 97(4): 1194. |
[33] | FU L C, ZHOU L P. Effect of applied magnetic field on wear behavior of martensitic steel. Journal of Materials Research and Technology, 2019, 8(3): 2880. |
[1] | MU Haojie, ZHANG Yuanjiang, YU Bin, FU Xiumei, ZHOU Shibin, LI Xiaodong. Preparation and Properties of ZrO2 Doped Y2O3-MgO Nanocomposite Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 281-289. |
[2] | FAN Wugang, CAO Xiong, ZHOU Xiang, LI Ling, ZHAO Guannan, ZHANG Zhaoquan. Anticorrosion Performance of 8YSZ Ceramics in Simulated Aqueous Environment of Pressurized Water Reactor [J]. Journal of Inorganic Materials, 2024, 39(7): 803-809. |
[3] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[4] | JIANG Lingyi, PANG Shengyang, YANG Chao, ZHANG Yue, HU Chenglong, TANG Sufang. Preparation and Oxidation Behaviors of C/SiC-BN Composites [J]. Journal of Inorganic Materials, 2024, 39(7): 779-786. |
[5] | ZHENG Yawen, ZHANG Cuiping, ZHANG Ruijie, XIA Qian, RU Hongqiang. Fabrication of Boron Carbide Ceramic Composites by Boronic Acid Carbothermal Reduction and Silicon Infiltration Reaction Sintering [J]. Journal of Inorganic Materials, 2024, 39(6): 707-714. |
[6] | XUE Yifan, LI Weijie, ZHANG Zhongwei, PANG Xu, LIU Yu. Process Control of PyC Interphases Microstructure and Uniformity in Carbon Fiber Cloth [J]. Journal of Inorganic Materials, 2024, 39(4): 399-408. |
[7] | SUN Chuan, HE Pengfei, HU Zhenfeng, WANG Rong, XING Yue, ZHANG Zhibin, LI Jinglong, WAN Chunlei, LIANG Xiubing. SiC-based Ceramic Materials Incorporating GNPs Array: Preparation and Mechanical Characterization [J]. Journal of Inorganic Materials, 2024, 39(3): 267-273. |
[8] | ZHENG Jiaqian, LU Xiao, LU Yajie, WANG Yingjun, WANG Zhen, LU Jianxi. Functional Bioadaptability in Medical Bioceramics: Biological Mechanism and Application [J]. Journal of Inorganic Materials, 2024, 39(1): 1-16. |
[9] | HE Danqi, WEI Mingxu, LIU Ruizhi, TANG Zhixin, ZHAI Pengcheng, ZHAO Wenyu. Heavy-Fermion YbAl3 Materials: One-step Synthesis and Enhanced Thermoelectric Performance [J]. Journal of Inorganic Materials, 2023, 38(5): 577-582. |
[10] | WU Shuang, GOU Yanzi, WANG Yongshou, SONG Quzhi, ZHANG Qingyu, WANG Yingde. Effect of Heat Treatment on Composition, Microstructure and Mechanical Property of Domestic KD-SA SiC Fibers [J]. Journal of Inorganic Materials, 2023, 38(5): 569-576. |
[11] | XIE Jiaye, LI Liwen, ZHU Qiang. Contrastive Study on in Vitro Antibacterial Property and Biocompatibility of Three Clinical Pulp Capping Agents [J]. Journal of Inorganic Materials, 2023, 38(12): 1449-1456. |
[12] | LI Jianbo, TIAN Zhen, JIANG Quanwei, YU Lifeng, KANG Huijun, CAO Zhiqiang, WANG Tongmin. Effects of Different Element Doping on Microstructure and Thermoelectric Properties of CaTiO3 [J]. Journal of Inorganic Materials, 2023, 38(12): 1396-1404. |
[13] | WU Dongjiang, ZHAO Ziyuan, YU Xuexin, MA Guangyi, YOU Zhulin, REN Guanhui, NIU Fangyong. Direct Additive Manufacturing of Al2O3-TiCp Composite Ceramics by Laser Directed Energy Deposition [J]. Journal of Inorganic Materials, 2023, 38(10): 1183-1192. |
[14] | ZHANG Ye, ZENG Yuping. Progress of Porous Silicon Nitride Ceramics Prepared via Self-propagating High Temperature Synthesis [J]. Journal of Inorganic Materials, 2022, 37(8): 853-864. |
[15] | CHEN Junyun, SUN Lei, JIN Tianye, LUO Kun, ZHAO Zhisheng, TIAN Yongjun. Binderless Layered BN Toughened cBN for Ultra-precision Cutting [J]. Journal of Inorganic Materials, 2022, 37(6): 623-628. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||