[1] |
REANEY I M, IDDLES D. Microwave dielectric ceramics for resonators and filters in mobile phone networks. Journal of the American Ceramic Society, 2006, 89(7): 2063.
|
[2] |
SEBASTIAN M T, UBIC R, JANTUNEN H. Low-loss dielectric ceramic materials and their properties. International Materials Reviews, 2015, 60(7): 392.
|
[3] |
ZHOU D, PANG L X, WANG D W, et al. BiVO4 based high k microwave dielectric materials: a review. Journal of Materials Chemistry C, 2018, 6(35): 9290.
|
[4] |
JOSEPH T, SEBASTIAN M T. Microwave dielectric properties of (Sr1-xAx)2(Zn1-xBx)Si2O7 ceramics (A=Ca, Ba and B=Co, Mg, Mn, Ni). Journal of the American Ceramic Society, 2010, 93(1): 147.
|
[5] |
YANG H C, ZHANG S R, YANG H Y, et al. The latest process and challenges of microwave dielectric ceramics based on pseudo phase diagrams. Journal of Advanced Ceramics, 2021, 10(5): 885.
|
[6] |
HUANG Z P, QIAO J L, LI L X. Crystal structure and microwave dielectric characteristics of ixiolite ceramics with molybdenum ion modification and tri-layered structure. Journal of Alloys and Compounds, 2023, 931: 167489.
|
[7] |
UBIC R, REANEY I M, LEE W E. Microwave dielectric solid- solution phase in system BaO-Ln2O3-TiO2 (Ln = lanthanide cation). International Materials Reviews, 1998, 43(5): 205.
|
[8] |
TAKAHASHI H, BABA Y, EZAKI K, et al. Microwave dielectric properties and crystal structure of CaO-Li2O-(1-x)Sm2O3-xLn2O3- TiO2 (Ln: lanthanide) ceramics system. Japanese Journal of Applied Physics, 1996, 35(9S): 5069.
|
[9] |
CAVA R J. Dielectric materials for applications in microwave communications. Journal of Materials Chemistry, 2001, 11(1): 54.
|
[10] |
VANDERAH T A. Talking ceramics. Science, 2002, 298(5596): 1182.
|
[11] |
ZHOU D, FAN X Q, JIN X W, et al. Structures, phase transformations, and dielectric properties of BiTaO4 ceramics. Inorganic Chemistry, 2016, 55(22): 11979.
|
[12] |
PHILLIPS J C. Dielectric definition of electronegativity. Physical Review Letters, 1968, 20(11): 550.
|
[13] |
VAN VECHTEN J A. Quantum dielectric theory of electronegativity in covalent systems. I. Electronic dielectric constant. Physical Review, 1969, 182: 891.
|
[14] |
VAN VECHTEN J A. Quantum dielectric theory of electronegativity in covalent systems. II. Ionization potentials and interband transition energies. Physical Review, 1969, 187(3): 1007.
|
[15] |
PHILLIPS J C. Ionicity of the chemical bond in crystals. Reviews of Modern Physics, 1970, 42(3): 317.
|
[16] |
LEVINE B F. Bond susceptibilities and ionicities in complex crystal structures. Journal of Chemical Physics, 1973, 59(3): 1463.
|
[17] |
XUE D F, ZHANG S Y. Calculation of the nonlinear optical coefficient of the NdAl3(BO3)4 crystal. Journal of Physics: Condensed Matter, 1996, 8: 1949.
|
[18] |
PENN D R. Wave-number-dependent dielectric function of semiconductors. Physical Review, 1962, 128(5): 2093.
|
[19] |
KUCHARCZYK W. A bond-charge calculation of the quadratic electro-optic effect in LiF. Journal of Physics C: Solid State Physics, 1987, 20(12): 1875.
|
[20] |
YANG H Y, ZHANG S R, YANG H C, et al. Usage of P-V-L bond theory in studying the structural/property regulation of microwave dielectric ceramics: a review. Inorganic Chemistry Frontiers, 2020, 7(23): 4711.
|
[21] |
SHI J S, ZHANG S Y. Barycenter of energy of lanthanide 4fN-15d configuration in inorganic crystals. The Journal of Physical Chemistry B, 2004, 108(49): 18845.
|
[22] |
WU Z J, MENG Q B, ZHANG S Y. Semiempirical study on the valences of Cu and bond covalency in Y1-xCaxBa2Cu3O6+y. Physical Review B, 1998, 58(2): 958.
|
[23] |
XUE D F, ZHANG S Y. Chemical bond analysis of nonlinearity of urea crystal. The Journal of Physical Chemistry A, 1997, 101(30): 5547.
|
[24] |
LIU D T, ZHANG S Y, WU Z J. Lattice energy estimation for inorganic ionic crystals. Inorganic Chemistry, 2003, 42(7): 2465.
|
[25] |
ROTH G, REDHAMMER G J. A comparison of the clinopyroxene compounds CaZnSi2O6 and CaZnGe2O6. Acta Crystallographica Section C, 2005, 61(2): i20.
|
[26] |
XIAO M, WEI Y S, ZHANG P. The effect of sintering temperature on the crystal structure and microwave dielectric properties of CaCoSi2O6 ceramic. Materials Chemistry and Physics, 2019, 225: 99.
|
[27] |
SUN H P, ZHANG Q L, YANG H, et al. (Ca1-xMgx)SiO3: a low-permittivity microwave dielectric ceramic system. Materials Science and Engineering: B, 2007, 138(1): 46.
|
[28] |
LAI Y M, SU H, WANG G, et al. Improved microwave dielectric properties of CaMgSi2O6 ceramics through CuO doping. Journal of Alloys and Compounds, 2019, 772: 40.
|
[29] |
XIAO M, WEI Y S, SUN H R, et al. Crystal structure and microwave dielectric properties of low-permittivity Sr2MgSi2O7 ceramic. Journal of Materials Science: Materials in Electronics, 2018, 29(23): 20339.
|
[30] |
SUGIHARA J, KAKIMOTO K I, KAGOMIYA I, et al. Microwave dielectric properties of porous Mg2SiO4 filling with TiO2 prepared by a liquid phase deposition process. Journal of the European Ceramic Society, 2007, 27(8/9): 3105.
|
[31] |
LIU K, ZHANG H W, LIU C, et al. Crystal structure and microwave dielectric properties of (Mg0.2Ni0.2Zn0.2Co0.2Mn0.2)2SiO4 - a novel high-entropy ceramic. Ceramics International, 2022, 48(16): 23307.
|
[32] |
ZHANG P C, CHEN X Q, CHEN G T, et al. Structural dependence of microwave dielectric properties of Ca3MgSi2O8 ceramics. Journal of Materials Science, 2022, 57(22): 10039.
|
[33] |
SONG X Q, LEI W, WANG F, et al. Phase evolution, crystal structure, and microwave dielectric properties of gillespite-type ceramics. Journal of the American Ceramic Society, 2021, 104(4): 1740.
|
[34] |
QIN J C, LIU Z F, MA M S, et al. Structure and microwave dielectric properties of gillespite-type ACuSi4O10 (A = Ca, Sr, Ba) ceramics and quantitative prediction of the Q × f value via machine learning. ACS Applied Materials & Interfaces, 2021, 13(15): 17817.
|
[35] |
CHENG Z L, XU L M, WANG X, et al. The effect of B-site ions on crystal structure evolution and microwave dielectric properties of gillespite-type SrCu0.95B0.05(B2+: Cu, Co, Mn, Ni, Mg, Zn)Si4O10. Ceramics International, 2023, 49(22): 36800.
|
[36] |
HUANG F Y, SU H, ZHANG Q, et al. The structural characteristics and microwave dielectric properties of Ti4+ doped CaMgSi2O6 ceramics. Ceramics International, 2022, 48(22): 33615.
|
[37] |
KORNEV I, BICHURIN M, RIVERA J P, et al. Magnetoelectric properties of LiCoPO4 and LiNiPO4. Physical Review B: Condensed Matter and Materials Physics, 2000, 62(18): 12247.
|
[38] |
BIAN J J, KIM D W, HONG K S. Glass-free LTCC microwave dielectric ceramics. Materials Research Bulletin, 2005, 40(12): 2120.
|
[39] |
GUO T, WU W J, WANG Y L, et al. Relations on synthesis, crystal structure and microwave dielectric properties of SrZnP2O7 ceramics. Ceramics International, 2012, 38: S187.
|
[40] |
ZHANG P, WU S X, XIAO M. The microwave dielectric properties and crystal structure of low temperature sintering LiNiPO4 ceramics. Journal of the European Ceramic Society, 2018, 38(13): 4433.
|
[41] |
TIAN H R, ZHANG X H, ZHANG Z D, et al. Low-permittivity LiLn(PO3)4 (Ln = La, Sm, Eu) dielectric ceramics for microwave/millimeter-wave communication. Journal of Advanced Ceramics, 2024, 13(5): 602.
|
[42] |
LI J, LIU J, ZHANG Y C, et al. Exploring the Ln-O bonding nature and charge characteristics in monazite in relation to microwave dielectric properties. Journal of the American Ceramic Society, 2024, 107(1): 175.
|
[43] |
FENG Z B, WANG Y Z, KIMURA H, et al. Sintering behavior, microwave dielectric properties, and chemical bond features of novel low-loss monoclinic-structure Ni3(PO4)2 ceramic based on NiO-P2O5 binary phase diagram. Ceramics International, 2022, 48(20): 30681.
|
[44] |
BAO J, DU J L, LIU L T, et al. A new type of microwave dielectric ceramic based on K2O-SrO-P2O5 composition with high quality factor and low sintering temperature. Ceramics International, 2022, 48(1): 784.
|
[45] |
CHEN X Q, LI H, ZHANG P C, et al. A low-permittivity microwave dielectric ceramic BaZnP2O7 and its performance modification. Journal of the American Ceramic Society, 2021, 104(10): 5214.
|
[46] |
BAO J, ZHANG Y P, KIMURA H, et al. Crystal structure, chemical bond characteristics, infrared reflection spectrum, and microwave dielectric properties of Nd2(Zr1-xTix)3(MoO4)9 ceramics. Journal of Advanced Ceramics, 2023, 12(1): 82.
|
[47] |
ZHANG Y H, SUN J J, DAI N, et al. Crystal structure, infrared spectra and microwave dielectric properties of novel extra low-temperature fired Eu2Zr3(MoO4)9 ceramics. Journal of the European Ceramic Society, 2019, 39(4): 1127.
|
[48] |
LIU W Q, ZUO R Z. Low temperature fired Ln2Zr3(MoO4)9 (Ln=Sm, Nd) microwave dielectric ceramics. Ceramics International, 2017, 43(18): 17229.
|
[49] |
LIU W Q, ZUO R Z. A novel low-temperature firable La2Zr3(MoO4)9 microwave dielectric ceramic. Journal of the European Ceramic Society, 2018, 38(1): 339.
|
[50] |
XING C F, WU B, BAO J, et al. Crystal structure, infrared spectra and microwave dielectric properties of a novel low-firing Gd2Zr3(MoO4)9 ceramic. Ceramics International, 2019, 45(17): 22207.
|
[51] |
TAO B J, XING C F, WANG W F, et al. A novel Ce2Zr3(MoO4)9 microwave dielectric ceramic with ultra-low firing temperature. Ceramics International, 2019, 45(18): 24675.
|
[52] |
TIAN H R, ZHOU X, JIANG T Y, et al. Bond characteristics and microwave dielectric properties of (Mn1/3Sb2/3)4+ doped molybdate based low-temperature sintering ceramics. Journal of Alloys and Compounds, 2022, 906: 164333.
|
[53] |
BAO J, WANG Y Z, KIMURA H, et al. Sintering characteristics, crystal structure, and microwave dielectric properties of Ce2[Zr1-x(Al1/2Nb1/2)x]3(MoO4)9 ceramics. Journal of Alloys and Compounds, 2022, 925: 166566.
|
[54] |
IVLEVA L I, BASIEV T T, VORONINA I S, et al. SrWO4: Nd3+-new material for multifunctional lasers. Optical Materials, 2003, 23(1/2): 439.
|
[55] |
NAZAROV M V, TSUKERBLAT B S, POPOVICI E J, et al. Optical lines in europium-terbium double activated calcium tungstate phosphor. Physics Letters A, 2004, 330(3/4): 291.
|
[56] |
YOON S H, KIM D W, CHO S Y, et al. Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds. Journal of the European Ceramic Society, 2006, 26(10/11): 2051.
|
[57] |
KRŽMANC M M, LOGAR M, BUDIČ B, et al. Dielectric and microstructural study of the SrWO4, BaWO4, and CaWO4 scheelite ceramics. Journal of the American Ceramic Society, 2011, 94(8): 2464.
|
[58] |
KHOBRAGADE N, SINHA E, ROUT S K, et al. Structural, optical and microwave dielectric properties of Sr1-xCaxWO4 ceramics prepared by the solid state reaction route. Ceramics International, 2013, 39(8): 9627.
|
[59] |
PÔRTO S L, LONGO E, PIZANI P S, et al. Photoluminescence in the CaxSr1-xWO4 system at room temperature. Journal of Solid State Chemistry, 2008, 181(8): 1876.
|
[60] |
LONGO V M, ORHAN E, CAVALCANTE L S, et al. Understanding the origin of photoluminescence in disordered Ca0.60Sr0.40WO4: an experimental and first-principles study. Chemical Physics, 2007, 334(1/2/3): 180.
|
[61] |
NAJAFVANDZADEH N, VALI R. The electronic and microwave dielectric properties of Sr1-xCaxWO4 alloys by first principles calculations. Physica B: Condensed Matter, 2019, 572: 266.
|
[62] |
ZHANG Q, SU H, ZHANG H W, et al. Bond, vibration and microwave dielectric characteristics of Zn1-x(Li0.5Bi0.5)xWO4 ceramics with low temperature sintering. Journal of Materiomics, 2022, 8(2): 392.
|
[63] |
ZHANG Q, XU L L, TANG X L, et al. Electronic structure, Raman spectra, and microwave dielectric properties of co-substituted ZnWO4 ceramics. Journal of Alloys and Compounds, 2021, 874: 159928.
|
[64] |
YIN C Z, LI C C, YANG G J, et al. NaCa4V5O17: a low-firing microwave dielectric ceramic with low permittivity and chemical compatibility with silver for LTCC applications. Journal of the European Ceramic Society, 2020, 40(2): 386.
|
[65] |
XIANG H C, LI C C, TANG Y, et al. Two novel ultralow temperature firing microwave dielectric ceramics LiMVO6 (M=Mo, W) and their chemical compatibility with metal electrodes. Journal of the European Ceramic Society, 2017, 37(13): 3959.
|
[66] |
CAO H M, CHEN L, LI B. A new microwave dielectric ceramic Zn2V2O7 with low sintering temperature. Materials Letters, 2022, 326: 132924.
|
[67] |
LIN M C, LING I C, HSU T H, et al. Investigation of the correlation between structure and microwave dielectric properties of ZnV2O6 ceramic using P-V-L bond theory. Journal of the European Ceramic Society, 2024, 44(8): 5016.
|
[68] |
YANG R J, CHEN L, LI B. A new rare-earth orthovanadate microwave dielectric ceramic: ErVO4. Materials Chemistry and Physics, 2023, 301: 127630.
|
[69] |
ZHANG P, FAN X, FAN X Y. Effects of Cu2+ substitution on the sintering behavior, crystal structure and microwave dielectric properties of Li3Mg4NbO8 ceramics. Materials Chemistry and Physics, 2024, 316: 129118.
|
[70] |
XIE F, ZHOU S, GAO F, et al. Raman vibration, bond chemistry and enhanced microwave dielectric properties of Li3Mg2NbO6 ceramics under an oxygen atmosphere. Ceramics International, 2022, 48(21): 32049.
|
[71] |
PENG S, LI C, GAO X H, et al. Crystal structures, chemical bonds, and microwave dielectric properties of ZnCu2Nb2O8 ceramics. Ceramics International, 2024, 50(1): 2396.
|
[72] |
HUANG Z P, QIAO J L, LI L X. Enhanced dielectric properties and chemical bond characteristics of MgNb2O6 ceramics due to magnesium oxide doping. Ceramics International, 2023, 49(20): 32946.
|
[73] |
WANG G, YAN H, HU Y F, et al. Microstructure evolution, crystal structure, Raman analysis, bond characteristics and enhanced microwave dielectric properties of Zn1-xCuxZrNb2O8 solid solution ceramics. Ceramics International, 2023, 49(22): 35264.
|
[74] |
YANG H Y, CHAI L, LIU Q, et al. Ionic substitution effects on the structure-property relationship of Zn0.5Ti0.5NbO4 microwave dielectric ceramics. Ceramics International, 2022, 48(17): 25292.
|
[75] |
WU F F, ZHOU D, DU C, et al. Temperature stable Sm(Nb1-xVx)O4 (0.0≤x≤0.9) microwave dielectric ceramics with ultra-low dielectric loss for dielectric resonator antenna applications. Journal of Materials Chemistry C, 2021, 9(31): 9962.
|
[76] |
LIU H T, WANG G, ZHANG H W. Correlation between crystal structure, bond characteristics, Raman vibrations, and improved microwave dielectric properties of high-performance Zn0.5Zr0.5NbO4 ceramics: first principle calculation and experiment. Ceramics International, 2023, 49(18): 30001.
|
[77] |
WANG J, ZELENYUK A, IMRE D, et al. Big data management with incremental K-means trees-GPU-accelerated construction and visualization. Informatics, 2017, 4(3): 24.
|
[78] |
ZHENG J Y, WANG S, GAO L H, et al. First-principlescalculations of crystal structure, electronic structure and optical properties of Ba2RETaO6 (RE = Y, La, Pr, Sm, Gd). Journal of Materials Science, 2018, 53(13): 9401.
|
[79] |
HUO J M, ZHONG C W, LI E Z, et al. New temperature stable YbTaO4 microwave dielectric ceramic with monoclinic structure. Ceramics International, 2022, 48(23): 34465.
|
[80] |
KIM E S, JEON C J. Dependence of microwave dielectric properties on structural characteristics of ilmenite, tri-rutile and wolframite ceramics. Journal of Advanced Dielectrics, 2011, 1(1): 127.
|
[81] |
YANG H Y, GUO Z X, XIONG Z, et al. Bond theory, vibrational spectroscopy, and dielectric responses of trirutile ATa2O6 (A = Mg, Ni) microwave ceramics. Ceramics International, 2024, 50(11): 19171.
|
[82] |
FANG Z X, YANG H Y, YANG H C, et al. Ilmenite-type MgTiO3 ceramics by complex (Mn1/2W1/2)4+ cation co-substitution producing improved microwave characteristics. Ceramics International, 2021, 47(15): 21388.
|
[83] |
SHI L, WANG X Y, PENG R, et al. Bond characteristics and microwave dielectric ceramic of rare-earth tantalite NdTaO4 ceramic. Ceramics International, 2022, 48(20): 30101.
|
[84] |
SHI L, WANG X Y, PENG R, et al. Effect of Mn2+ doping on the lattice and the microwave dielectric properties of MgTa2O6 ceramics. Ceramics International, 2022, 48(14): 20096.
|
[85] |
SHI L, WANG X Y, PENG R, et al. Crystallographic characteristics and microwave dielectric properties of Ni-modified MgTa2O6 ceramics. Ceramics International, 2021, 47(16): 22514.
|
[86] |
WU X H, JING Y L, LI Y X, et al. Novel tri-rutile Ni0.5Ti0.5TaO4 microwave dielectric ceramics: crystal structure chemistry, Raman vibration mode, and chemical bond characteristic in-depth studies. The Journal of Physical Chemistry C, 2022, 126(34): 14680.
|
[87] |
YANG H Y, ZHANG S R, CHEN Y W, et al. Crystal chemistry, Raman spectra, and bond characteristics of trirutile-type Co0.5Ti0.5TaO4 microwave dielectric ceramics. Inorganic Chemistry, 2019, 58(1): 968.
|
[88] |
LIU K, ZHANG H W, LIU C, et al. Relationship between microwave dielectric properties and structure of Ca2+-substituted ZnZrTa2O8 ceramics. Journal of Alloys and Compounds, 2023, 934: 167981.
|
[89] |
LIN Y J, WANG S F, LAI B C, et al. Densification, microstructure evolution, and microwave dielectric properties of Mg1-xCaxZrTa2O8 ceramics. Journal of the European Ceramic Society, 2017, 37(8): 2825.
|
[90] |
WANG G, ZHANG D N, LI J, et al. Structural dependence of microwave dielectric performance of wolframite structured Mg1-xCaxZrNb2O8 ceramics: crystal structure, microstructure evolution, Raman analysis and chemical bond theory. Journal of the European Ceramic Society, 2021, 41(6): 3445.
|
[91] |
GUO Y P, OHSATO H, KAKIMOTO K I. Characterization and dielectric behavior of willemite and TiO2-doped willemite ceramics at millimeter-wave frequency. Journal of the European Ceramic Society, 2006, 26(10/11): 1827.
|
[92] |
LEI W, LU W Z, ZHU J H, et al. Microwave dielectric properties of ZnAl2O4-TiO2 spinel-based composites. Materials Letters, 2007, 61(19/20): 4066.
|
[93] |
KAGOMIYA I, MATSUDA Y, KAKIMOTO K, et al. Microwave dielectric properties of YAG ceramics. Ferroelectrics, 2009, 387(1): 1.
|
[94] |
FU Z F, LIU P, MA J L, et al. Novel series of ultra-low loss microwave dielectric ceramics: Li2Mg3BO6 (B = Ti, Sn, Zr). Journal of the European Ceramic Society, 2016, 36(3): 625.
|
[95] |
YANG J, PANG J B, LUO X F, et al. Phase structure, bond features, and microwave dielectric characteristics of Ruddlesden- Popper type Sr2TiO4 ceramics. Materials, 2023, 16(14): 5195.
|
[96] |
LI H, XIANG R, CHEN X Q, et al. Intrinsic dielectric behavior of Mg2TiO4 spinel ceramic. Ceramics International, 2020, 46(4): 4235.
|
[97] |
KIM H T, BYUN J D, KIM Y. Microstructure and microwave dielectric properties of modified zinc titanates (II). Materials Research Bulletin, 1998, 33(6): 975.
|
[98] |
WANG Y J, LI J, FANG W S, et al. A novel ultra-high Q microwave dielectric ceramic ZnMgTiO4 with spinel structure. Ceramics International, 2023, 49(22): 35420.
|
[99] |
GEORGE S, SEBASTIAN M T. Synthesis and microwave dielectric properties of novel temperature stable high Q, Li2ATi3O8 (A=Mg, Zn) ceramics. Journal of the American Ceramic Society, 2010, 93(8): 2164.
|
[100] |
GUO H H, FU M S, ZHOU D, et al. Design of a high-efficiency and- gain antenna using novel low-loss, temperature-stable Li2Ti1-x(Cu1/3Nb2/3)xO3 microwave dielectric ceramics. ACS Applied Materials & Interfaces, 2021, 13(1): 912.
|
[101] |
LIU K, SHI L, WANG X Y, et al. Li+ enrichment to improve the microwave dielectric properties of Li2ZnTi3O8 ceramics and the relationship between structure and properties. Journal of the European Ceramic Society, 2023, 43(4): 1483.
|
[102] |
JOVIC N, ANTIC B, KREMENOVIC A, et al. Cation ordering and order-disorder phase transitionin co-substituted Li4Ti5O12 spinels. Physica Status Solidi (a), 2003, 198(1): 18.
|
[103] |
TANG Y, SHEN S Y, LI J, et al. Characterization of structure and chemical bond in high-Q microwave dielectric ceramics LiM2GaTi2O8 (M = Mg, Zn). Journal of the European Ceramic Society, 2022, 42(11): 4573.
|
[104] |
QING Z J, LIU A, DUAN S M, et al. Structure, chemical bonding characteristics and microwave dielectric properties of Li5Mg3Ti2O9F ceramic with low sintering temperature. Ceramics International, 2024, 50(9): 15195.
|
[105] |
LOWNDES R, AZOUGH F, CERNIK R, et al. Structures and microwave dielectric properties of Ca(1-x)Nd2x/3TiO3 ceramics. Journal of the European Ceramic Society, 2012, 32(14): 3791.
|
[106] |
YOSHIDA M, HARA N, TAKADA T T T, et al. Structure and dielectric properties of (Ca1-xNd2x/3)TiO3. Japanese Journal of Applied Physics, 1997, 36: 6818.
|
[107] |
XIONG Z, TANG B, LUO F C, et al. Characterization of structure, chemical bond and microwave dielectric properties in Ca0.61Nd0.26TiO3 ceramic substituted by chromium for titanium. Journal of Alloys and Compounds, 2020, 835: 155249.
|
[108] |
YANG H Y, ZHANG S R, YANG H C, et al. Structural evolution and microwave dielectric properties of x. Inorganic Chemistry, 2018, 57(14): 8264.
|
[109] |
HU Z C, LI E Z, YANG H C, et al. Ionic substitution effects on the crystal structure and microwave dielectric properties of rutile Zn0.15Nb0.3Ti0.55O2 ceramics. Journal of Materials Science: Materials in Electronics, 2023, 35(1): 15.
|
[110] |
LIU Y, CHENG Z L, GAN L, et al. Microwave dielectric properties and sintering behavior of a novel low-cost lightweight, middle-εr Na2Ti6O13 ceramics. Ceramics International, 2024, 50(1): 2103.
|