Journal of Inorganic Materials ›› 2025, Vol. 40 ›› Issue (6): 609-626.DOI: 10.15541/jim20240450
• REVIEW • Previous Articles Next Articles
HU Zhichao1(), YANG Hongyu2(
), YANG Hongcheng3, SUN Chengli1, YANG Jun4, LI Enzhu1(
)
Received:
2024-10-29
Revised:
2025-01-02
Published:
2025-06-20
Online:
2025-01-09
Contact:
YANG Hongyu, lecturer. E-mail: yanghongyu@xidian.edu.cn;About author:
HU Zhichao (2000-), male, PhD candidate. E-mail: 3256341968@qq.com
Supported by:
CLC Number:
HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics[J]. Journal of Inorganic Materials, 2025, 40(6): 609-626.
Fig. 2 Polar coordinates (Eg, φ) correspond to the covalent and ionic energies expressed in Cartesian coordinates (Eh, C), and the polar angle φ indicating the ionic phase angle (drawn with reference to Ref. [15])
Formula | Crystal structure | εr | Q×f/GHz | τf/(×10−6, ℃−1) | ST*/℃ | Ref. |
---|---|---|---|---|---|---|
CaMgSi2O6 | ![]() | 7.46 | 59638 | -46 | 1290 | [ |
CaCoSi2O6 | 6.04 | 12457 | -18.91 | 1175 | [ | |
CaMgSi1.95Ti0.05O6 | 7.94 | 80774 | -58.56 | 1275 | [ | |
Sr2MgSi2O7 | ![]() | 8.3 | 55000 | -47.5 | 1550 | [ |
Sr2MnSi2O7 | 8.8 | 32000 | -58.5 | 1375 | ||
Ca2ZnSi2O7 | ![]() | 11.0 | 13500 | -64.3 | 1300 | |
Mg2SiO4 | ![]() | 6.8 | 270000 | -70 | 1500 | [ |
(Mg0.2Ni0.2Zn0.2Co0.2Mn0.2)2SiO4 | 8.02 | 28431 | -38.2 | 1250 | [ | |
SrCu0.95B0.05(B2+: Cu, Co, Mn, Ni, Mg, Zn)Si4O10 | ![]() | 5.8 | 65589 | -50 | 1050 | [ |
Table 1 Crystal structures and microwave dielectric properties of silicate ceramics
Formula | Crystal structure | εr | Q×f/GHz | τf/(×10−6, ℃−1) | ST*/℃ | Ref. |
---|---|---|---|---|---|---|
CaMgSi2O6 | ![]() | 7.46 | 59638 | -46 | 1290 | [ |
CaCoSi2O6 | 6.04 | 12457 | -18.91 | 1175 | [ | |
CaMgSi1.95Ti0.05O6 | 7.94 | 80774 | -58.56 | 1275 | [ | |
Sr2MgSi2O7 | ![]() | 8.3 | 55000 | -47.5 | 1550 | [ |
Sr2MnSi2O7 | 8.8 | 32000 | -58.5 | 1375 | ||
Ca2ZnSi2O7 | ![]() | 11.0 | 13500 | -64.3 | 1300 | |
Mg2SiO4 | ![]() | 6.8 | 270000 | -70 | 1500 | [ |
(Mg0.2Ni0.2Zn0.2Co0.2Mn0.2)2SiO4 | 8.02 | 28431 | -38.2 | 1250 | [ | |
SrCu0.95B0.05(B2+: Cu, Co, Mn, Ni, Mg, Zn)Si4O10 | ![]() | 5.8 | 65589 | -50 | 1050 | [ |
Formula | Crystal structure | εr | Q×f/GHz | τf/(×10−6, ℃−1) | ST/℃ | Ref. |
---|---|---|---|---|---|---|
LiNiPO4 | ![]() | 11.49 | 10792 | -2.8 | 900 | [ |
LiLnPO4(Ln=La, Sm, Eu) | ![]() | 5.04-5.26 | 41607-75968 | -19.64--47.49 | 910-925 | [ |
KSrPO4 | ![]() | 7.85 | 34527 | -14.82 | 950 | [ |
Ni3(PO4)2 | ![]() | 6.23 | 83430 | -24.63 | 1200 | [ |
BaZnP2O7 | ![]() | 8.21 | 84760 | -21.9 | 900 | [ |
Table 2 Crystal structures and microwave dielectric properties of phosphate ceramics
Formula | Crystal structure | εr | Q×f/GHz | τf/(×10−6, ℃−1) | ST/℃ | Ref. |
---|---|---|---|---|---|---|
LiNiPO4 | ![]() | 11.49 | 10792 | -2.8 | 900 | [ |
LiLnPO4(Ln=La, Sm, Eu) | ![]() | 5.04-5.26 | 41607-75968 | -19.64--47.49 | 910-925 | [ |
KSrPO4 | ![]() | 7.85 | 34527 | -14.82 | 950 | [ |
Ni3(PO4)2 | ![]() | 6.23 | 83430 | -24.63 | 1200 | [ |
BaZnP2O7 | ![]() | 8.21 | 84760 | -21.9 | 900 | [ |
Formula | Crystal structure | εr | Q×f/GHz | τf/(×10−6, ℃−1) | ST/℃ | Ref. |
---|---|---|---|---|---|---|
Li3Mg2NbO6 | ![]() | 15.3 | 109600 | -17.3 | 1100 | [ |
MgNb2O6 | ![]() | 20.82 | 121580 | -48.89 | 1460 | [ |
ZnCu2Nb2O8 | ![]() | 18.56 | 47776 | -16.3 | 920 | [ |
ZnZrNb2O8−Cu | ![]() | 27.9 | 73200 | -40 | 1175 | [ |
Zn0.5Ti0.5NbO4−Co | ![]() | 38.11 | 39720 | -70 | 1150 | [ |
Zn0.5Ti0.5NbO4−Ta | 37.86 | 43642 | -72.69 | 1150 | [ | |
ZnTiNb2O8 | ![]() | 41.52 | 50827 | -2.59 | 1150 | |
SmNbO4 | ![]() | 16.89-18.01 | 75200-97800 | 5.6-2.3 | 1150 | [ |
Table 3 Crystal structures and microwave dielectric properties of niobate ceramics
Formula | Crystal structure | εr | Q×f/GHz | τf/(×10−6, ℃−1) | ST/℃ | Ref. |
---|---|---|---|---|---|---|
Li3Mg2NbO6 | ![]() | 15.3 | 109600 | -17.3 | 1100 | [ |
MgNb2O6 | ![]() | 20.82 | 121580 | -48.89 | 1460 | [ |
ZnCu2Nb2O8 | ![]() | 18.56 | 47776 | -16.3 | 920 | [ |
ZnZrNb2O8−Cu | ![]() | 27.9 | 73200 | -40 | 1175 | [ |
Zn0.5Ti0.5NbO4−Co | ![]() | 38.11 | 39720 | -70 | 1150 | [ |
Zn0.5Ti0.5NbO4−Ta | 37.86 | 43642 | -72.69 | 1150 | [ | |
ZnTiNb2O8 | ![]() | 41.52 | 50827 | -2.59 | 1150 | |
SmNbO4 | ![]() | 16.89-18.01 | 75200-97800 | 5.6-2.3 | 1150 | [ |
Formula | Crystal structure | εr | Q×f/GHz | τf/(×10−6, ℃−1) | ST/℃ | Ref. |
---|---|---|---|---|---|---|
NdTaO4 | ![]() | 18 | 13136 | -21 | 1500 | [ |
YbTaO4 | 18.52 | 21928 | 1.25 | 1675 | [ | |
MgTa2O6 | ![]() | 27.27 | 109203 | 53.38 | 1300 | [ |
NiTa2O6 | 24.58 | 27610 | 33.94 | 1250 | ||
MgTa2O6−Mn | 28 | 105000 | 19.5 | 1325 | [ | |
Mg(1−x)NixTa2O6 | 27 | 173000 | 35 | 1325 | [ | |
Ni0.5Ti0.5TaO4 | ![]() | 33.06 | 14600 | 95 | 1200−1300 | [ |
Co0.5Ti0.5TaO4 | 40.69 | 17291 | 114.54 | 1075 | [ | |
ZnZrTa2O8 | ![]() | 23.14 | 140915 | -26.42 | 1375 | [ |
Table 4 Crystal structures and microwave dielectric properties of tantalate ceramics
Formula | Crystal structure | εr | Q×f/GHz | τf/(×10−6, ℃−1) | ST/℃ | Ref. |
---|---|---|---|---|---|---|
NdTaO4 | ![]() | 18 | 13136 | -21 | 1500 | [ |
YbTaO4 | 18.52 | 21928 | 1.25 | 1675 | [ | |
MgTa2O6 | ![]() | 27.27 | 109203 | 53.38 | 1300 | [ |
NiTa2O6 | 24.58 | 27610 | 33.94 | 1250 | ||
MgTa2O6−Mn | 28 | 105000 | 19.5 | 1325 | [ | |
Mg(1−x)NixTa2O6 | 27 | 173000 | 35 | 1325 | [ | |
Ni0.5Ti0.5TaO4 | ![]() | 33.06 | 14600 | 95 | 1200−1300 | [ |
Co0.5Ti0.5TaO4 | 40.69 | 17291 | 114.54 | 1075 | [ | |
ZnZrTa2O8 | ![]() | 23.14 | 140915 | -26.42 | 1375 | [ |
Formula | Crystal structure | εr | Q×f/GHz | τf/ (×10−6, ℃−1) | ST/℃ | Ref. |
---|---|---|---|---|---|---|
SrTiO4 | ![]() | 39.41 | 93120 | 110.54 | 1475 | [ |
Mg2TiO4 | ![]() | 14.51 | 161570 | -49.3 | 1480 | [ |
ZnMgTiO4 | ![]() | 16.8 | 202021 | -38 | 1400 | [ |
Na2Ti6O13 | ![]() | 34.3 | 33660 | 10.03 | 1025 | [ |
Li2ZnTi3O8 | ![]() | 25.92 | 109534 | -8.21 | 1100 | [ |
Li5Mg3Ti2O9F | ![]() | 14.8 | 98500 | -15.6 | 925 | [ |
Ca0.61Nd0.26TiO3−Cr | ![]() | 99.3 | 16078 | 244.5 | 1400 | [ |
Zn0.15Nb0.3Ti0.55O2 | ![]() | 94.35 | 11889 | 353.43 | 1075 | [ |
Table 5 Crystal structures and microwave dielectric properties of titanate ceramics
Formula | Crystal structure | εr | Q×f/GHz | τf/ (×10−6, ℃−1) | ST/℃ | Ref. |
---|---|---|---|---|---|---|
SrTiO4 | ![]() | 39.41 | 93120 | 110.54 | 1475 | [ |
Mg2TiO4 | ![]() | 14.51 | 161570 | -49.3 | 1480 | [ |
ZnMgTiO4 | ![]() | 16.8 | 202021 | -38 | 1400 | [ |
Na2Ti6O13 | ![]() | 34.3 | 33660 | 10.03 | 1025 | [ |
Li2ZnTi3O8 | ![]() | 25.92 | 109534 | -8.21 | 1100 | [ |
Li5Mg3Ti2O9F | ![]() | 14.8 | 98500 | -15.6 | 925 | [ |
Ca0.61Nd0.26TiO3−Cr | ![]() | 99.3 | 16078 | 244.5 | 1400 | [ |
Zn0.15Nb0.3Ti0.55O2 | ![]() | 94.35 | 11889 | 353.43 | 1075 | [ |
[1] | REANEY I M, IDDLES D. Microwave dielectric ceramics for resonators and filters in mobile phone networks. Journal of the American Ceramic Society, 2006, 89(7): 2063. |
[2] | SEBASTIAN M T, UBIC R, JANTUNEN H. Low-loss dielectric ceramic materials and their properties. International Materials Reviews, 2015, 60(7): 392. |
[3] | ZHOU D, PANG L X, WANG D W, et al. BiVO4 based high k microwave dielectric materials: a review. Journal of Materials Chemistry C, 2018, 6(35): 9290. |
[4] | JOSEPH T, SEBASTIAN M T. Microwave dielectric properties of (Sr1-xAx)2(Zn1-xBx)Si2O7 ceramics (A=Ca, Ba and B=Co, Mg, Mn, Ni). Journal of the American Ceramic Society, 2010, 93(1): 147. |
[5] | YANG H C, ZHANG S R, YANG H Y, et al. The latest process and challenges of microwave dielectric ceramics based on pseudo phase diagrams. Journal of Advanced Ceramics, 2021, 10(5): 885. |
[6] | HUANG Z P, QIAO J L, LI L X. Crystal structure and microwave dielectric characteristics of ixiolite ceramics with molybdenum ion modification and tri-layered structure. Journal of Alloys and Compounds, 2023, 931: 167489. |
[7] | UBIC R, REANEY I M, LEE W E. Microwave dielectric solid- solution phase in system BaO-Ln2O3-TiO2 (Ln = lanthanide cation). International Materials Reviews, 1998, 43(5): 205. |
[8] | TAKAHASHI H, BABA Y, EZAKI K, et al. Microwave dielectric properties and crystal structure of CaO-Li2O-(1-x)Sm2O3-xLn2O3- TiO2 (Ln: lanthanide) ceramics system. Japanese Journal of Applied Physics, 1996, 35(9S): 5069. |
[9] | CAVA R J. Dielectric materials for applications in microwave communications. Journal of Materials Chemistry, 2001, 11(1): 54. |
[10] | VANDERAH T A. Talking ceramics. Science, 2002, 298(5596): 1182. |
[11] | ZHOU D, FAN X Q, JIN X W, et al. Structures, phase transformations, and dielectric properties of BiTaO4 ceramics. Inorganic Chemistry, 2016, 55(22): 11979. |
[12] | PHILLIPS J C. Dielectric definition of electronegativity. Physical Review Letters, 1968, 20(11): 550. |
[13] | VAN VECHTEN J A. Quantum dielectric theory of electronegativity in covalent systems. I. Electronic dielectric constant. Physical Review, 1969, 182: 891. |
[14] | VAN VECHTEN J A. Quantum dielectric theory of electronegativity in covalent systems. II. Ionization potentials and interband transition energies. Physical Review, 1969, 187(3): 1007. |
[15] | PHILLIPS J C. Ionicity of the chemical bond in crystals. Reviews of Modern Physics, 1970, 42(3): 317. |
[16] | LEVINE B F. Bond susceptibilities and ionicities in complex crystal structures. Journal of Chemical Physics, 1973, 59(3): 1463. |
[17] | XUE D F, ZHANG S Y. Calculation of the nonlinear optical coefficient of the NdAl3(BO3)4 crystal. Journal of Physics: Condensed Matter, 1996, 8: 1949. |
[18] | PENN D R. Wave-number-dependent dielectric function of semiconductors. Physical Review, 1962, 128(5): 2093. |
[19] | KUCHARCZYK W. A bond-charge calculation of the quadratic electro-optic effect in LiF. Journal of Physics C: Solid State Physics, 1987, 20(12): 1875. |
[20] | YANG H Y, ZHANG S R, YANG H C, et al. Usage of P-V-L bond theory in studying the structural/property regulation of microwave dielectric ceramics: a review. Inorganic Chemistry Frontiers, 2020, 7(23): 4711. |
[21] | SHI J S, ZHANG S Y. Barycenter of energy of lanthanide 4fN-15d configuration in inorganic crystals. The Journal of Physical Chemistry B, 2004, 108(49): 18845. |
[22] | WU Z J, MENG Q B, ZHANG S Y. Semiempirical study on the valences of Cu and bond covalency in Y1-xCaxBa2Cu3O6+y. Physical Review B, 1998, 58(2): 958. |
[23] | XUE D F, ZHANG S Y. Chemical bond analysis of nonlinearity of urea crystal. The Journal of Physical Chemistry A, 1997, 101(30): 5547. |
[24] |
LIU D T, ZHANG S Y, WU Z J. Lattice energy estimation for inorganic ionic crystals. Inorganic Chemistry, 2003, 42(7): 2465.
PMID |
[25] | ROTH G, REDHAMMER G J. A comparison of the clinopyroxene compounds CaZnSi2O6 and CaZnGe2O6. Acta Crystallographica Section C, 2005, 61(2): i20. |
[26] | XIAO M, WEI Y S, ZHANG P. The effect of sintering temperature on the crystal structure and microwave dielectric properties of CaCoSi2O6 ceramic. Materials Chemistry and Physics, 2019, 225: 99. |
[27] | SUN H P, ZHANG Q L, YANG H, et al. (Ca1-xMgx)SiO3: a low-permittivity microwave dielectric ceramic system. Materials Science and Engineering: B, 2007, 138(1): 46. |
[28] | LAI Y M, SU H, WANG G, et al. Improved microwave dielectric properties of CaMgSi2O6 ceramics through CuO doping. Journal of Alloys and Compounds, 2019, 772: 40. |
[29] | XIAO M, WEI Y S, SUN H R, et al. Crystal structure and microwave dielectric properties of low-permittivity Sr2MgSi2O7 ceramic. Journal of Materials Science: Materials in Electronics, 2018, 29(23): 20339. |
[30] | SUGIHARA J, KAKIMOTO K I, KAGOMIYA I, et al. Microwave dielectric properties of porous Mg2SiO4 filling with TiO2 prepared by a liquid phase deposition process. Journal of the European Ceramic Society, 2007, 27(8/9): 3105. |
[31] | LIU K, ZHANG H W, LIU C, et al. Crystal structure and microwave dielectric properties of (Mg0.2Ni0.2Zn0.2Co0.2Mn0.2)2SiO4 - a novel high-entropy ceramic. Ceramics International, 2022, 48(16): 23307. |
[32] | ZHANG P C, CHEN X Q, CHEN G T, et al. Structural dependence of microwave dielectric properties of Ca3MgSi2O8 ceramics. Journal of Materials Science, 2022, 57(22): 10039. |
[33] | SONG X Q, LEI W, WANG F, et al. Phase evolution, crystal structure, and microwave dielectric properties of gillespite-type ceramics. Journal of the American Ceramic Society, 2021, 104(4): 1740. |
[34] | QIN J C, LIU Z F, MA M S, et al. Structure and microwave dielectric properties of gillespite-type ACuSi4O10 (A = Ca, Sr, Ba) ceramics and quantitative prediction of the Q × f value via machine learning. ACS Applied Materials & Interfaces, 2021, 13(15): 17817. |
[35] | CHENG Z L, XU L M, WANG X, et al. The effect of B-site ions on crystal structure evolution and microwave dielectric properties of gillespite-type SrCu0.95B0.05(B2+: Cu, Co, Mn, Ni, Mg, Zn)Si4O10. Ceramics International, 2023, 49(22): 36800. |
[36] | HUANG F Y, SU H, ZHANG Q, et al. The structural characteristics and microwave dielectric properties of Ti4+ doped CaMgSi2O6 ceramics. Ceramics International, 2022, 48(22): 33615. |
[37] | KORNEV I, BICHURIN M, RIVERA J P, et al. Magnetoelectric properties of LiCoPO4 and LiNiPO4. Physical Review B: Condensed Matter and Materials Physics, 2000, 62(18): 12247. |
[38] | BIAN J J, KIM D W, HONG K S. Glass-free LTCC microwave dielectric ceramics. Materials Research Bulletin, 2005, 40(12): 2120. |
[39] | GUO T, WU W J, WANG Y L, et al. Relations on synthesis, crystal structure and microwave dielectric properties of SrZnP2O7 ceramics. Ceramics International, 2012, 38: S187. |
[40] | ZHANG P, WU S X, XIAO M. The microwave dielectric properties and crystal structure of low temperature sintering LiNiPO4 ceramics. Journal of the European Ceramic Society, 2018, 38(13): 4433. |
[41] | TIAN H R, ZHANG X H, ZHANG Z D, et al. Low-permittivity LiLn(PO3)4 (Ln = La, Sm, Eu) dielectric ceramics for microwave/millimeter-wave communication. Journal of Advanced Ceramics, 2024, 13(5): 602. |
[42] | LI J, LIU J, ZHANG Y C, et al. Exploring the Ln-O bonding nature and charge characteristics in monazite in relation to microwave dielectric properties. Journal of the American Ceramic Society, 2024, 107(1): 175. |
[43] | FENG Z B, WANG Y Z, KIMURA H, et al. Sintering behavior, microwave dielectric properties, and chemical bond features of novel low-loss monoclinic-structure Ni3(PO4)2 ceramic based on NiO-P2O5 binary phase diagram. Ceramics International, 2022, 48(20): 30681. |
[44] | BAO J, DU J L, LIU L T, et al. A new type of microwave dielectric ceramic based on K2O-SrO-P2O5 composition with high quality factor and low sintering temperature. Ceramics International, 2022, 48(1): 784. |
[45] | CHEN X Q, LI H, ZHANG P C, et al. A low-permittivity microwave dielectric ceramic BaZnP2O7 and its performance modification. Journal of the American Ceramic Society, 2021, 104(10): 5214. |
[46] | BAO J, ZHANG Y P, KIMURA H, et al. Crystal structure, chemical bond characteristics, infrared reflection spectrum, and microwave dielectric properties of Nd2(Zr1-xTix)3(MoO4)9 ceramics. Journal of Advanced Ceramics, 2023, 12(1): 82. |
[47] | ZHANG Y H, SUN J J, DAI N, et al. Crystal structure, infrared spectra and microwave dielectric properties of novel extra low-temperature fired Eu2Zr3(MoO4)9 ceramics. Journal of the European Ceramic Society, 2019, 39(4): 1127. |
[48] | LIU W Q, ZUO R Z. Low temperature fired Ln2Zr3(MoO4)9 (Ln=Sm, Nd) microwave dielectric ceramics. Ceramics International, 2017, 43(18): 17229. |
[49] | LIU W Q, ZUO R Z. A novel low-temperature firable La2Zr3(MoO4)9 microwave dielectric ceramic. Journal of the European Ceramic Society, 2018, 38(1): 339. |
[50] | XING C F, WU B, BAO J, et al. Crystal structure, infrared spectra and microwave dielectric properties of a novel low-firing Gd2Zr3(MoO4)9 ceramic. Ceramics International, 2019, 45(17): 22207. |
[51] | TAO B J, XING C F, WANG W F, et al. A novel Ce2Zr3(MoO4)9 microwave dielectric ceramic with ultra-low firing temperature. Ceramics International, 2019, 45(18): 24675. |
[52] | TIAN H R, ZHOU X, JIANG T Y, et al. Bond characteristics and microwave dielectric properties of (Mn1/3Sb2/3)4+ doped molybdate based low-temperature sintering ceramics. Journal of Alloys and Compounds, 2022, 906: 164333. |
[53] | BAO J, WANG Y Z, KIMURA H, et al. Sintering characteristics, crystal structure, and microwave dielectric properties of Ce2[Zr1-x(Al1/2Nb1/2)x]3(MoO4)9 ceramics. Journal of Alloys and Compounds, 2022, 925: 166566. |
[54] | IVLEVA L I, BASIEV T T, VORONINA I S, et al. SrWO4: Nd3+-new material for multifunctional lasers. Optical Materials, 2003, 23(1/2): 439. |
[55] | NAZAROV M V, TSUKERBLAT B S, POPOVICI E J, et al. Optical lines in europium-terbium double activated calcium tungstate phosphor. Physics Letters A, 2004, 330(3/4): 291. |
[56] | YOON S H, KIM D W, CHO S Y, et al. Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds. Journal of the European Ceramic Society, 2006, 26(10/11): 2051. |
[57] | KRŽMANC M M, LOGAR M, BUDIČ B, et al. Dielectric and microstructural study of the SrWO4, BaWO4, and CaWO4 scheelite ceramics. Journal of the American Ceramic Society, 2011, 94(8): 2464. |
[58] | KHOBRAGADE N, SINHA E, ROUT S K, et al. Structural, optical and microwave dielectric properties of Sr1-xCaxWO4 ceramics prepared by the solid state reaction route. Ceramics International, 2013, 39(8): 9627. |
[59] | PÔRTO S L, LONGO E, PIZANI P S, et al. Photoluminescence in the CaxSr1-xWO4 system at room temperature. Journal of Solid State Chemistry, 2008, 181(8): 1876. |
[60] | LONGO V M, ORHAN E, CAVALCANTE L S, et al. Understanding the origin of photoluminescence in disordered Ca0.60Sr0.40WO4: an experimental and first-principles study. Chemical Physics, 2007, 334(1/2/3): 180. |
[61] | NAJAFVANDZADEH N, VALI R. The electronic and microwave dielectric properties of Sr1-xCaxWO4 alloys by first principles calculations. Physica B: Condensed Matter, 2019, 572: 266. |
[62] | ZHANG Q, SU H, ZHANG H W, et al. Bond, vibration and microwave dielectric characteristics of Zn1-x(Li0.5Bi0.5)xWO4 ceramics with low temperature sintering. Journal of Materiomics, 2022, 8(2): 392. |
[63] | ZHANG Q, XU L L, TANG X L, et al. Electronic structure, Raman spectra, and microwave dielectric properties of co-substituted ZnWO4 ceramics. Journal of Alloys and Compounds, 2021, 874: 159928. |
[64] | YIN C Z, LI C C, YANG G J, et al. NaCa4V5O17: a low-firing microwave dielectric ceramic with low permittivity and chemical compatibility with silver for LTCC applications. Journal of the European Ceramic Society, 2020, 40(2): 386. |
[65] | XIANG H C, LI C C, TANG Y, et al. Two novel ultralow temperature firing microwave dielectric ceramics LiMVO6 (M=Mo, W) and their chemical compatibility with metal electrodes. Journal of the European Ceramic Society, 2017, 37(13): 3959. |
[66] | CAO H M, CHEN L, LI B. A new microwave dielectric ceramic Zn2V2O7 with low sintering temperature. Materials Letters, 2022, 326: 132924. |
[67] | LIN M C, LING I C, HSU T H, et al. Investigation of the correlation between structure and microwave dielectric properties of ZnV2O6 ceramic using P-V-L bond theory. Journal of the European Ceramic Society, 2024, 44(8): 5016. |
[68] | YANG R J, CHEN L, LI B. A new rare-earth orthovanadate microwave dielectric ceramic: ErVO4. Materials Chemistry and Physics, 2023, 301: 127630. |
[69] | ZHANG P, FAN X, FAN X Y. Effects of Cu2+ substitution on the sintering behavior, crystal structure and microwave dielectric properties of Li3Mg4NbO8 ceramics. Materials Chemistry and Physics, 2024, 316: 129118. |
[70] | XIE F, ZHOU S, GAO F, et al. Raman vibration, bond chemistry and enhanced microwave dielectric properties of Li3Mg2NbO6 ceramics under an oxygen atmosphere. Ceramics International, 2022, 48(21): 32049. |
[71] | PENG S, LI C, GAO X H, et al. Crystal structures, chemical bonds, and microwave dielectric properties of ZnCu2Nb2O8 ceramics. Ceramics International, 2024, 50(1): 2396. |
[72] | HUANG Z P, QIAO J L, LI L X. Enhanced dielectric properties and chemical bond characteristics of MgNb2O6 ceramics due to magnesium oxide doping. Ceramics International, 2023, 49(20): 32946. |
[73] | WANG G, YAN H, HU Y F, et al. Microstructure evolution, crystal structure, Raman analysis, bond characteristics and enhanced microwave dielectric properties of Zn1-xCuxZrNb2O8 solid solution ceramics. Ceramics International, 2023, 49(22): 35264. |
[74] | YANG H Y, CHAI L, LIU Q, et al. Ionic substitution effects on the structure-property relationship of Zn0.5Ti0.5NbO4 microwave dielectric ceramics. Ceramics International, 2022, 48(17): 25292. |
[75] | WU F F, ZHOU D, DU C, et al. Temperature stable Sm(Nb1-xVx)O4 (0.0≤x≤0.9) microwave dielectric ceramics with ultra-low dielectric loss for dielectric resonator antenna applications. Journal of Materials Chemistry C, 2021, 9(31): 9962. |
[76] | LIU H T, WANG G, ZHANG H W. Correlation between crystal structure, bond characteristics, Raman vibrations, and improved microwave dielectric properties of high-performance Zn0.5Zr0.5NbO4 ceramics: first principle calculation and experiment. Ceramics International, 2023, 49(18): 30001. |
[77] | WANG J, ZELENYUK A, IMRE D, et al. Big data management with incremental K-means trees-GPU-accelerated construction and visualization. Informatics, 2017, 4(3): 24. |
[78] | ZHENG J Y, WANG S, GAO L H, et al. First-principlescalculations of crystal structure, electronic structure and optical properties of Ba2RETaO6 (RE = Y, La, Pr, Sm, Gd). Journal of Materials Science, 2018, 53(13): 9401. |
[79] | HUO J M, ZHONG C W, LI E Z, et al. New temperature stable YbTaO4 microwave dielectric ceramic with monoclinic structure. Ceramics International, 2022, 48(23): 34465. |
[80] | KIM E S, JEON C J. Dependence of microwave dielectric properties on structural characteristics of ilmenite, tri-rutile and wolframite ceramics. Journal of Advanced Dielectrics, 2011, 1(1): 127. |
[81] | YANG H Y, GUO Z X, XIONG Z, et al. Bond theory, vibrational spectroscopy, and dielectric responses of trirutile ATa2O6 (A = Mg, Ni) microwave ceramics. Ceramics International, 2024, 50(11): 19171. |
[82] | FANG Z X, YANG H Y, YANG H C, et al. Ilmenite-type MgTiO3 ceramics by complex (Mn1/2W1/2)4+ cation co-substitution producing improved microwave characteristics. Ceramics International, 2021, 47(15): 21388. |
[83] | SHI L, WANG X Y, PENG R, et al. Bond characteristics and microwave dielectric ceramic of rare-earth tantalite NdTaO4 ceramic. Ceramics International, 2022, 48(20): 30101. |
[84] | SHI L, WANG X Y, PENG R, et al. Effect of Mn2+ doping on the lattice and the microwave dielectric properties of MgTa2O6 ceramics. Ceramics International, 2022, 48(14): 20096. |
[85] | SHI L, WANG X Y, PENG R, et al. Crystallographic characteristics and microwave dielectric properties of Ni-modified MgTa2O6 ceramics. Ceramics International, 2021, 47(16): 22514. |
[86] | WU X H, JING Y L, LI Y X, et al. Novel tri-rutile Ni0.5Ti0.5TaO4 microwave dielectric ceramics: crystal structure chemistry, Raman vibration mode, and chemical bond characteristic in-depth studies. The Journal of Physical Chemistry C, 2022, 126(34): 14680. |
[87] | YANG H Y, ZHANG S R, CHEN Y W, et al. Crystal chemistry, Raman spectra, and bond characteristics of trirutile-type Co0.5Ti0.5TaO4 microwave dielectric ceramics. Inorganic Chemistry, 2019, 58(1): 968. |
[88] | LIU K, ZHANG H W, LIU C, et al. Relationship between microwave dielectric properties and structure of Ca2+-substituted ZnZrTa2O8 ceramics. Journal of Alloys and Compounds, 2023, 934: 167981. |
[89] | LIN Y J, WANG S F, LAI B C, et al. Densification, microstructure evolution, and microwave dielectric properties of Mg1-xCaxZrTa2O8 ceramics. Journal of the European Ceramic Society, 2017, 37(8): 2825. |
[90] | WANG G, ZHANG D N, LI J, et al. Structural dependence of microwave dielectric performance of wolframite structured Mg1-xCaxZrNb2O8 ceramics: crystal structure, microstructure evolution, Raman analysis and chemical bond theory. Journal of the European Ceramic Society, 2021, 41(6): 3445. |
[91] | GUO Y P, OHSATO H, KAKIMOTO K I. Characterization and dielectric behavior of willemite and TiO2-doped willemite ceramics at millimeter-wave frequency. Journal of the European Ceramic Society, 2006, 26(10/11): 1827. |
[92] | LEI W, LU W Z, ZHU J H, et al. Microwave dielectric properties of ZnAl2O4-TiO2 spinel-based composites. Materials Letters, 2007, 61(19/20): 4066. |
[93] | KAGOMIYA I, MATSUDA Y, KAKIMOTO K, et al. Microwave dielectric properties of YAG ceramics. Ferroelectrics, 2009, 387(1): 1. |
[94] | FU Z F, LIU P, MA J L, et al. Novel series of ultra-low loss microwave dielectric ceramics: Li2Mg3BO6 (B = Ti, Sn, Zr). Journal of the European Ceramic Society, 2016, 36(3): 625. |
[95] | YANG J, PANG J B, LUO X F, et al. Phase structure, bond features, and microwave dielectric characteristics of Ruddlesden- Popper type Sr2TiO4 ceramics. Materials, 2023, 16(14): 5195. |
[96] | LI H, XIANG R, CHEN X Q, et al. Intrinsic dielectric behavior of Mg2TiO4 spinel ceramic. Ceramics International, 2020, 46(4): 4235. |
[97] | KIM H T, BYUN J D, KIM Y. Microstructure and microwave dielectric properties of modified zinc titanates (II). Materials Research Bulletin, 1998, 33(6): 975. |
[98] | WANG Y J, LI J, FANG W S, et al. A novel ultra-high Q microwave dielectric ceramic ZnMgTiO4 with spinel structure. Ceramics International, 2023, 49(22): 35420. |
[99] | GEORGE S, SEBASTIAN M T. Synthesis and microwave dielectric properties of novel temperature stable high Q, Li2ATi3O8 (A=Mg, Zn) ceramics. Journal of the American Ceramic Society, 2010, 93(8): 2164. |
[100] | GUO H H, FU M S, ZHOU D, et al. Design of a high-efficiency and- gain antenna using novel low-loss, temperature-stable Li2Ti1-x(Cu1/3Nb2/3)xO3 microwave dielectric ceramics. ACS Applied Materials & Interfaces, 2021, 13(1): 912. |
[101] | LIU K, SHI L, WANG X Y, et al. Li+ enrichment to improve the microwave dielectric properties of Li2ZnTi3O8 ceramics and the relationship between structure and properties. Journal of the European Ceramic Society, 2023, 43(4): 1483. |
[102] | JOVIC N, ANTIC B, KREMENOVIC A, et al. Cation ordering and order-disorder phase transitionin co-substituted Li4Ti5O12 spinels. Physica Status Solidi (a), 2003, 198(1): 18. |
[103] | TANG Y, SHEN S Y, LI J, et al. Characterization of structure and chemical bond in high-Q microwave dielectric ceramics LiM2GaTi2O8 (M = Mg, Zn). Journal of the European Ceramic Society, 2022, 42(11): 4573. |
[104] | QING Z J, LIU A, DUAN S M, et al. Structure, chemical bonding characteristics and microwave dielectric properties of Li5Mg3Ti2O9F ceramic with low sintering temperature. Ceramics International, 2024, 50(9): 15195. |
[105] | LOWNDES R, AZOUGH F, CERNIK R, et al. Structures and microwave dielectric properties of Ca(1-x)Nd2x/3TiO3 ceramics. Journal of the European Ceramic Society, 2012, 32(14): 3791. |
[106] | YOSHIDA M, HARA N, TAKADA T T T, et al. Structure and dielectric properties of (Ca1-xNd2x/3)TiO3. Japanese Journal of Applied Physics, 1997, 36: 6818. |
[107] | XIONG Z, TANG B, LUO F C, et al. Characterization of structure, chemical bond and microwave dielectric properties in Ca0.61Nd0.26TiO3 ceramic substituted by chromium for titanium. Journal of Alloys and Compounds, 2020, 835: 155249. |
[108] | YANG H Y, ZHANG S R, YANG H C, et al. Structural evolution and microwave dielectric properties of x. Inorganic Chemistry, 2018, 57(14): 8264. |
[109] | HU Z C, LI E Z, YANG H C, et al. Ionic substitution effects on the crystal structure and microwave dielectric properties of rutile Zn0.15Nb0.3Ti0.55O2 ceramics. Journal of Materials Science: Materials in Electronics, 2023, 35(1): 15. |
[110] | LIU Y, CHENG Z L, GAN L, et al. Microwave dielectric properties and sintering behavior of a novel low-cost lightweight, middle-εr Na2Ti6O13 ceramics. Ceramics International, 2024, 50(1): 2103. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HE Guoqiang, ZHANG Kaiheng, WANG Zhentao, BAO Jian, XI Zhaochen, FANG Zhen, WANG Changhao, WANG Wei, WANG Xin, JIANG Jiapei, LI Xiangkun, ZHOU Di. Ba(Nd1/2Nb1/2)O3: Au Underrated K40 Microwave Dielectric Ceramic [J]. Journal of Inorganic Materials, 2025, 40(6): 639-646. |
[3] | TANG Ying, LI Jie, XIANG Huaicheng, FANG Weishuang, LIN Huixing, YANG Junfeng, FANG Liang. Rattling Effect: A New Mechanism Affecting the Resonant Frequency Temperature Coefficient of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 656-666. |
[4] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[5] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[6] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[7] | YANG Yan, ZHANG Faqiang, MA Mingsheng, WANG Yongzhe, OUYANG Qi, LIU Zhifu. Low Temperature Sintering of ZnAl2O4 Ceramics with CuO-TiO2-Nb2O5 Composite Oxide Sintering Aid [J]. Journal of Inorganic Materials, 2025, 40(6): 711-718. |
[8] | HUANG Zipeng, JIA Wenxiao, LI Lingxia. Crystal Structure and Terahertz Dielectric Properties of (Ti0.5W0.5)5+ Doped MgNb2O6 Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 647-655. |
[9] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[10] | YIN Changzhi, CHENG Mingfei, LEI Weicheng, CAI Yiyang, SONG Xiaoqiang, FU Ming, LÜ Wenzhong, LEI Wen. Effect of Ga3+ Doping on Crystal Structure Evolution and Microwave Dielectric Properties of SrAl2Si2O8 Ceramic [J]. Journal of Inorganic Materials, 2025, 40(6): 704-710. |
[11] | ZHAO Kaixuan, LIU Wenpeng, DING Shoujun, DOU Renqin, LUO Jianqiao, GAO Jinyun, SUN Guihua, REN Hao, ZHANG Qingli. Nd:YLF Crystal Growth: Raw Materials Preparation by Melting Method and Property [J]. Journal of Inorganic Materials, 2025, 40(5): 529-535. |
[12] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[13] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[14] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[15] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||