Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (1): 107-112.DOI: 10.15541/jim20230385
• RESEARCH LETTER • Previous Articles
YANG Pingjun1,2(), LI Tiehu1,2(
), LI Hao1,2(
), DANG Alei1,2
Received:
2023-08-28
Revised:
2023-10-20
Published:
2024-01-20
Online:
2023-11-22
Contact:
LI Tiehu, professor. E-mail: litiehu@nwpu.edu.cn;About author:
YANG Pingjun (1991-), PhD candidate. E-mail: pjyang@mail.nwpu.edu.cn
Supported by:
CLC Number:
YANG Pingjun, LI Tiehu, LI Hao, DANG Alei. Effect of Graphene on Graphitization, Electrical and Mechanical Properties of Epoxy Resin Carbon Foam[J]. Journal of Inorganic Materials, 2024, 39(1): 107-112.
Fig. 1 Structure parameters of EP CF modified by different contents of graphene after graphitization treatment at 3000 ℃ for 0.5 h (a) XRD patterns; (b) Raman spectra. Colorful figures are available on website
Fig. 2 SEM images of modified EP CF by different graphene contents after graphitization treatment at 3000 ℃ for 0.5 h (a, a1) EP CF0; (b, b1) EP CF0.01; (c, c1) EP CF0.02; (d, d1) EP CF0.05; (e, e1) EP CF0.1
Fig. 3 HRTEM images of EP CF and its graphitization mechanism (a) EP CF0; (b) EP CF0.05; (c) Schematic diagram of graphitization mechanism of EP CF treated at 3000 ℃for 0.5 h
Fig. 5 Mechanical properties of EP CF modified by different graphene contents after graphitization at 3000 ℃ for 0.5 h (a) Compressive strength; (b) Variation of stress with strain; Colorful figures are available on website
Sample | 2θ002/(°) | d002/nm | Lc/nm | g/% |
---|---|---|---|---|
EP CF0 | 25.9 | 0.3431 | 3.35 | 8.42 |
EP CF0.01 | 25.6 | 0.343 | 3.62 | 11.22 |
EP CF0.02 | 25.77 | 0.343 | 4.22 | 11.22 |
EP CF0.05 | 26.27 | 0.342 | 10.22 | 23.2 |
EP CF0.1 | 26.1 | 0.3425 | 4.46 | 16.5 |
Table S1 Crystalline parameters of EP CF modified by different graphene contents after treatment at 3000 ℃ for 0.5 h
Sample | 2θ002/(°) | d002/nm | Lc/nm | g/% |
---|---|---|---|---|
EP CF0 | 25.9 | 0.3431 | 3.35 | 8.42 |
EP CF0.01 | 25.6 | 0.343 | 3.62 | 11.22 |
EP CF0.02 | 25.77 | 0.343 | 4.22 | 11.22 |
EP CF0.05 | 26.27 | 0.342 | 10.22 | 23.2 |
EP CF0.1 | 26.1 | 0.3425 | 4.46 | 16.5 |
Sample | Density/(g·cm-3) | Electrical conductivity/(S·m-1) | Compressive strength/MPa |
---|---|---|---|
EP CF0 | 0.470 | 25.79 | 3.13 |
EP CF0.01 | 0.460 | 27.70 | 4.90 |
EP CF0.02 | 0.469 | 27.79 | 4.82 |
EP CF0.05 | 0.460 | 53.80 | 2.00 |
EP CF0.1 | 0.463 | 45.90 | 3.66 |
Table S2 Physical, electrical and mechanical properties of EP CF modified by different graphene content after graphitization treatment at 3000 ℃ for 0.5 h
Sample | Density/(g·cm-3) | Electrical conductivity/(S·m-1) | Compressive strength/MPa |
---|---|---|---|
EP CF0 | 0.470 | 25.79 | 3.13 |
EP CF0.01 | 0.460 | 27.70 | 4.90 |
EP CF0.02 | 0.469 | 27.79 | 4.82 |
EP CF0.05 | 0.460 | 53.80 | 2.00 |
EP CF0.1 | 0.463 | 45.90 | 3.66 |
[1] |
JEONG H, KANG Y G, RYU S S, et al. Fabrication of high- strength macroporous carbons with tunable pore size by a simple powder process using phenolic resin microspheres. Ceramics International, 2021, 47(7):8820.
DOI URL |
[2] |
YU K J, ZENG Y, WANG G L, et al. rGO/Fe3O4hybrid induced ultra-efficient EMI shielding performance of phenolic-based carbon foam. RSC Advances, 2019, 9(36):20643.
DOI URL |
[3] |
LIU H G, WU S Q, YOU C Y, et al. Fe3O4 nanoparticles decorated flexible carbon foam for efficient electromagnetic interference shielding. Ceramics International, 2022, 48(13):19452.
DOI URL |
[4] | SONG S A, LEE Y M, KIM Y S, et al. Mechanical and thermal properties of carbon foam derived from phenolic foam reinforced with composite particles. Composite Structures, 2017, 173: 1. |
[5] | INAGAKI M, QIU J S, GUO Q G. Carbon foam: preparation and application. Carbon, 2015, 87: 128. |
[6] |
MOHAN P. A critical review: the modification, properties, and applications of epoxy resins. Polymer-Plastics Technology and Engineering, 2013, 52(2):107.
DOI URL |
[7] | SZELUGA U, PUSZ S, KUMANEK B, et al. Carbon foam based on epoxy/novolac precursor as porous micro-filler of epoxy composites. Composites: Part A, 2018, 105: 28. |
[8] |
LI N, YANG Q Y, WEI Y X, et al. Phosphorus-doped hard carbon with controlled active groups and microstructure for high performance sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8(39):20486.
DOI URL |
[9] |
LEI S W, GUO Q G, SHI J L, et al. Preparation of phenolic-based carbon foam with controllable pore structure and high compressive strength. Carbon, 2010, 48 (9): 2644.
DOI URL |
[10] | TALABI S I, LUZ A P, PANDOLFELLI V C, et al. Structural evolution during the catalytic graphitization of a thermosetting refractory binder and oxidation resistance of the derived carbons. Materials Chemistry and Physics, 2018, 212: 113. |
[11] |
LIU H G, WU S Q, TIAN N, et al. Carbon foams: 3D porous carbon materials holding immense potential. Journal of Materials Chemistry A, 2020, 8(45):23699.
DOI URL |
[12] | NAGEL B, PUSZ S, TRZEBICKA B. Review: tailoring the properties of macroporous carbon foams. Journal of Materials Science, 2014, 49: 1. |
[13] | LI H, LI T H, DENG W B, et al. Preparation and adsorption properties of graphene-modified pitch-based carbon foam composites. Polymers, 2022, 14: 4455. |
[14] |
YANG P J, LI T H, LI H, et al. Progress in the graphitization and applications of modified resin carbons. New Carbon Materials, 2023, 38(1):96.
DOI URL |
[15] | YANG P J, LI T H, LI H, et al. Effect of coal tar pitch modification on the structure and char yield of pyrolysis epoxy resin carbons. Diamond & Related Materials, 2023, 137: 110099. |
[16] |
CHEN J, XIONG X, XIAO P. The effect of MWNTs on the microstructure of resin carbon and thermal conductivity of C/C composites. Solid State Sciences, 2009, 11(11): 1890.
DOI URL |
[17] |
YI S J, CHEN J H, LI H Y, et al. Effect of graphite oxide on graphitization of furan resin carbon. Carbon, 2010, 48(3):912.
DOI URL |
[18] | SCHUEPFER D B, BADACZEWSKI F, GUERRA-CASTRO J M, et al. Assessing the structural properties of graphitic and non- graphitic carbons by Raman spectroscopy. Carbon, 2020, 161: 359. |
[19] | THAPLIYAL V, ALABDULKARIM M E, WHELAN D R, et al. A concise review of the Raman spectra of carbon allotropes. Diamond & Related Materials, 2022, 127: 109180. |
[20] | ZHANG K, LI Y F, CHEN T T, et al. Preparation and properties of graphene nanosheets/carbon foam composites. Journal of Analytical and Applied Pyrolysis, 2016, 117: 290. |
[21] |
JING H, MIAO Z N, ZENG Z, et al. Carbonization of graphene-doped isocyanate-based polyimide foams to achieve carbon foams with excellent electromagnetic interference shielding performance. Materials, 2021, 14(24):7551.
DOI URL |
[22] | MILANI M A, GONZÁLEZ D, QUIJADA R, et al. Polypropylene/ graphene nanosheet nanocomposites by in situ polymerization: synthesis, characterization and fundamental properties. Composites Science and Technology, 2013, 84: 1. |
[1] | FAN Wugang, CAO Xiong, ZHOU Xiang, LI Ling, ZHAO Guannan, ZHANG Zhaoquan. Anticorrosion Performance of 8YSZ Ceramics in Simulated Aqueous Environment of Pressurized Water Reactor [J]. Journal of Inorganic Materials, 2024, 39(7): 803-809. |
[2] | WU Yuhao, PENG Renci, CHENG Chunyu, YANG Li, ZHOU Yichun. First-principles Study on Mechanical Properties and Melting Curve of HfxTa1-xC System [J]. Journal of Inorganic Materials, 2024, 39(7): 761-768. |
[3] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[4] | SUN Haiyang, JI Wei, WANG Weimin, FU Zhengyi. Design, Fabrication and Properties of Periodic Ordered Structural Composites with TiB-Ti Units [J]. Journal of Inorganic Materials, 2024, 39(6): 662-670. |
[5] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[6] | LIU Guoang, WANG Hailong, FANG Cheng, HUANG Feilong, YANG Huan. Effect of B4C Content on Mechanical Properties and Oxidation Resistance of (Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 697-706. |
[7] | SU Yi, SHI Yangfan, JIA Chenglan, CHI Pengtao, GAO Yang, MA Qingsong, CHEN Sian. Microstructure and Properties of C/HfC-SiC Composites Prepared by Slurry Impregnation Assisted Precursor Infiltration Pyrolysis [J]. Journal of Inorganic Materials, 2024, 39(6): 726-732. |
[8] | ZHANG Rui, ZHANG Kan, YUAN Mengya, GU Xinlei, ZHENG Weitao. Nitrogen Vacancy Regulated Lattice Distortion on Improvement of (NbMoTaW)Nx Thin Films: Mechanical Properties and Wear Resistance [J]. Journal of Inorganic Materials, 2024, 39(6): 715-725. |
[9] | LI Honglan, ZHANG Junmiao, SONG Erhong, YANG Xinglin. Mo/S Co-doped Graphene for Ammonia Synthesis: a Density Functional Theory Study [J]. Journal of Inorganic Materials, 2024, 39(5): 561-568. |
[10] | SUN Chuan, HE Pengfei, HU Zhenfeng, WANG Rong, XING Yue, ZHANG Zhibin, LI Jinglong, WAN Chunlei, LIANG Xiubing. SiC-based Ceramic Materials Incorporating GNPs Array: Preparation and Mechanical Characterization [J]. Journal of Inorganic Materials, 2024, 39(3): 267-273. |
[11] | ZHANG Yuchen, LU Zhiyao, HE Xiaodong, SONG Guangping, ZHU Chuncheng, ZHENG Yongting, BAI Yuelei. Predictions of Phase Stability and Properties of S-group Elements Containing MAX Borides [J]. Journal of Inorganic Materials, 2024, 39(2): 225-232. |
[12] | LI Lei, CHENG Qunfeng. Recent Advances in the High Performance MXenes Nanocomposites [J]. Journal of Inorganic Materials, 2024, 39(2): 153-161. |
[13] | LIU Yanyan, XIE Xi, LIU Zengqian, ZHANG Zhefeng. Metal Matrix Composites Reinforced by MAX Phase Ceramics: Fabrication, Properties and Bioinspired Designs [J]. Journal of Inorganic Materials, 2024, 39(2): 145-152. |
[14] | WANG Bo, CAI Delong, ZHU Qishuai, LI Daxin, YANG Zhihua, DUAN Xiaoming, LI Yanan, WANG Xuan, JIA Dechang, ZHOU Yu. Mechanical Properties and Thermal Shock Resistance of SrAl2Si2O8 Reinforced BN Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(10): 1182-1188. |
[15] | WANG Yanli, QIAN Xinyi, SHEN Chunyin, ZHAN Liang. Graphene Based Mesoporous Manganese-Cerium Oxides Catalysts: Preparation and Low-temperature Catalytic Reduction of NO [J]. Journal of Inorganic Materials, 2024, 39(1): 81-89. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||