Journal of Inorganic Materials ›› 2025, Vol. 40 ›› Issue (5): 473-480.DOI: 10.15541/jim20240445
• RESEARCH ARTICLE • Previous Articles Next Articles
YANG Mingkai1(), HUANG Zeai1,2, ZHOU Yunxiao1, LIU Tong1, ZHANG Kuikui1, TAN Hao1, LIU Mengying1, ZHAN Junjie1, CHEN Guoxing3, ZHOU Ying1,2(
)
Received:
2024-10-25
Revised:
2025-01-10
Published:
2025-05-20
Online:
2025-01-24
Contact:
ZHOU Ying, professor. E-mail: yzhou@swpu.edu.cnAbout author:
YANG Mingkai (1997-), male, Master candidate. E-mail: yangmk97@163.com
Supported by:
CLC Number:
YANG Mingkai, HUANG Zeai, ZHOU Yunxiao, LIU Tong, ZHANG Kuikui, TAN Hao, LIU Mengying, ZHAN Junjie, CHEN Guoxing, ZHOU Ying. Co-production of Few-layer Graphene and Hydrogen from Methane Pyrolysis Based on Cu and Metal Oxide-KCl Molten Medium[J]. Journal of Inorganic Materials, 2025, 40(5): 473-480.
Fig. 6 (a-c) TEM images of carbon materials produced using 50%Cu/ZrO2 catalysts; (d) HRTEM image of carbon materials produced using 75%Cu/MgO catalysts
Fig. 10 Schematic diagram of the reaction mechanism 1. Methane pyrolysis to few-layer graphene growth; 2. Few-layer graphene growth to separation; 3. Few-layer graphene separation to floating
Sample | Carbon/% (in mass) | Impurity/% (in mass) |
---|---|---|
50%Cu/SiO2 | 43.4 | 56.6 |
50%Cu/MgO | 67.5 | 32.5 |
50%Cu/ZrO2 | 52.2 | 47.8 |
50%Cu/TiO2 | 62.2 | 37.8 |
50%Cu/Al2O3 | 80.2 | 19.8 |
Table 1 S1 Contents of carbon materials and impurity produced using 50%Cu/MO catalysts
Sample | Carbon/% (in mass) | Impurity/% (in mass) |
---|---|---|
50%Cu/SiO2 | 43.4 | 56.6 |
50%Cu/MgO | 67.5 | 32.5 |
50%Cu/ZrO2 | 52.2 | 47.8 |
50%Cu/TiO2 | 62.2 | 37.8 |
50%Cu/Al2O3 | 80.2 | 19.8 |
Sample | Specific surface area/(m2·g-1) | Pore volume/ (cm3·g-1) | Average pore diameter/nm |
---|---|---|---|
50%Cu/SiO2 | 9.03 | 0.04 | 19.75 |
50%Cu/MgO | 11.76 | 0.06 | 19.26 |
50%Cu/ZrO2 | 10.33 | 0.05 | 19.76 |
50%Cu/TiO2 | 13.45 | 0.07 | 21.86 |
50%Cu/Al2O3 | 12.52 | 0.07 | 20.78 |
Table 2 S2 BET data for carbon materials produced using 50%Cu/MO catalysts
Sample | Specific surface area/(m2·g-1) | Pore volume/ (cm3·g-1) | Average pore diameter/nm |
---|---|---|---|
50%Cu/SiO2 | 9.03 | 0.04 | 19.75 |
50%Cu/MgO | 11.76 | 0.06 | 19.26 |
50%Cu/ZrO2 | 10.33 | 0.05 | 19.76 |
50%Cu/TiO2 | 13.45 | 0.07 | 21.86 |
50%Cu/Al2O3 | 12.52 | 0.07 | 20.78 |
[1] | 马新华, 张国生, 唐红君, 等. 天然气在构建清洁低碳能源体系中的地位与作用. 石油科技论坛, 2022, 41(1): 18. |
[2] | 何展军, 黄敏, 林铁军, 等. 光热催化甲烷干重整研究进展. 物理化学学报, 2023, 39(9): 28. |
[3] | PINAEVA L, NOSKOV A. Modern level of catalysts and technologies for the conversion of natural gas into syngas. Catalysis in Industry, 2022, 14(1): 66. |
[4] | LI H, PEI W, YANG X, et al. Pt overlayer for direct oxidation of CH4 to CH3OH. Chinese Chemical Letters, 2023, 34(11): 108292. |
[5] | SUN C, ZHAO K, YI Z. Research progress in catalytic total oxidation of methane. Journal of Inorganic Materials, 2023, 38(11): 1245. |
[6] | SHEN X, WU D, FU X Z, et al. Highly selective conversion of methane to ethanol over CuFe2O4-carbon nanotube catalysts at low temperature. Chinese Chemical Letters, 2022, 33(1): 390. |
[7] | CAO Y, YU W, HAN C, et al. Methane photooxidation with nearly 100% selectivity towards oxygenates: proton rebound ensures the regeneration of methanol. Angewandte Chemie International Edition, 2023, 135(18):e202302196. |
[8] | 黄泽皑, 周芸霄, 张魁魁, 等. 甲烷裂解制氢和碳材料工艺研究进展. 低碳化学与化工, 2024, 49(9): 1. |
[9] | ABÁNADES A, RATHNAM R K, GEISSLER T, et al. Development of methane decarbonisation based on liquid metal technology for CO2-free production of hydrogen. International Journal of Hydrogen Energy, 2016, 41(19): 8159. |
[10] | LIU M, HUANG Z, ZHOU Y, et al. Optimized process for melt pyrolysis of methane to produce hydrogen and carbon black over Ni foam/NaCl-KCl catalyst. Processes, 2023, 11(2): 360. |
[11] | ZHANG K, HUANG Z, YANG M, et al. Recent progress in melt pyrolysis: fabrication and applications of high-value carbon materials from abundant sources. SusMat, 2023, 3(5): 558. |
[12] | ZHOU Y, HUANG Z, ZHANG K, et al. Economic analysis of hydrogen production and refueling station via molten-medium- catalyzed pyrolysis of natural gas process. International Journal of Hydrogen Energy, 2024, 62: 1205. |
[13] | WALIMBE P, CHAUDHARI M. State-of-the-art advancements in studies and applications of graphene: a comprehensive review. Materials Today Sustainability, 2019, 6: 100026. |
[14] | QAMAR S, RAMZAN N, ALEEM W. Graphene dispersion, functionalization techniques and applications: a review. Synthetic Metals, 2024, 307: 117697. |
[15] | WANG L, LIRA P, HU G, et al. Graphene-based electrodes and catalysts for electroreduction of CO2 to low-carbon alcohols. Materials Reports: Energy, 2023, 3(2): 100192. |
[16] | WONG S I, LIN H, MA T, et al. Binary ionic liquid electrolyte design for ultrahigh-energy density graphene-based supercapacitors. Materials Reports: Energy, 2022, 2(2): 100093. |
[17] | WU J, YU L, LIU S, et al. NiN4/Cr Embedded graphene for electrochemical nitrogen fixation. Journal of Inorganic Materials, 2022, 37(10): 1141. |
[18] | 程熠, 王坤, 亓月, 等. 石墨烯纤维材料的化学气相沉积生长方法. 物理化学学报, 2022, 38(2): 40. |
[19] | LI X, CAI W, AN J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009, 324(5932): 1312. |
[20] | CHAE S J, GÜNEŞ F, KIM K K, et al. Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: wrinkle formation. Advanced Materials, 2009, 21(22): 2328. |
[21] | LUO D, WANG M, LI Y, et al. Adlayer-free large-area single crystal graphene grown on a Cu(111) foil. Advanced Materials, 2019, 31(35): 1903615. |
[22] | AMONTREE J, YAN X, DIMARCO C S, et al. Reproducible graphene synthesis by oxygen-free chemical vapour deposition. Nature, 2024, 630(8017): 636. |
[23] | UPHAM D C, AGARWAL V, KHECHFE A, et al. Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon. Science, 2017, 358(6365): 917. |
[24] | TANG Y, PENG P, WANG S, et al. Continuous production of graphite nanosheets by bubbling chemical vapor deposition using molten copper. Chemistry of Materials, 2017, 29(19): 8404. |
[25] | 敖东羿. 多层高品质石墨烯的大量制备及其应用研究. 成都: 电子科技大学博士学位论文, 2020. |
[26] | QIAO C, CHE J, WANG J, et al. Cost effective production of high quality multilayer graphene in molten Sn bubble column by using CH4 as carbon source. Journal of Alloys and Compounds, 2023, 930: 167495. |
[27] | PARKINSON B, PATZSCHKE C F, NIKOLIS D, et al. Methane pyrolysis in monovalent alkali halide salts: kinetics and pyrolytic carbon properties. International Journal of Hydrogen Energy, 2021, 46(9): 6225. |
[28] | WANG H Y, LUA A C. Hydrogen production by thermocatalytic methane decomposition. Heat Transfer Engineering, 2013, 34(11/12): 896. |
[29] | JONES R R, HOOPER D C, ZHANG L, et al. Raman techniques: fundamentals and frontiers. Nanoscale Research Letters, 2019, 14: 231. |
[30] | LUONG D X, BETS K V, ALGOZEEB W A, et al. Gram-scale bottom-up flash graphene synthesis. Nature, 2020, 577(7792): 647. |
[31] | LOSIC D, FARIVAR F, YAP P L, et al. Accounting carbonaceous counterfeits in graphene materials using the thermogravimetric analysis (TGA) approach. Analytical Chemistry, 2021, 93(34): 11859. |
[32] | FARIVAR F, YAP P L, HASSAN K, et al. Unlocking thermogravimetric analysis (TGA) in the fight against “fake graphene” materials. Carbon, 2021, 179: 505. |
[1] | CHEN Libo, SHENG Ying, WU Ming, SONG Jiling, JIAN Jian, SONG Erhong. Na and O Co-doped Carbon Nitride for Efficient Photocatalytic Hydrogen Evolution [J]. Journal of Inorganic Materials, 2025, 40(5): 552-562. |
[2] | LI Na, CAO Ruixiao, WEI Jin, ZHOU Han, XIAO Hongmei. Performance and Influencing Factors of Iron-based Catalyst for Ortho to Para Hydrogen Conversion [J]. Journal of Inorganic Materials, 2025, 40(1): 47-52. |
[3] | LIAN Minli, SU Jiaxin, HUANG Hongyang, JI Yuyin, DENG Haifan, ZHANG Tong, CHEN Chongqi, LI Dalin. Supported Ni Catalysts from Ni-Mg-Al Hydrotalcite-like Compounds:Preparation and Catalytic Performance for Ammonia Decomposition [J]. Journal of Inorganic Materials, 2025, 40(1): 53-60. |
[4] | JING Xinxin, CHEN Biqing, ZHAI Jiaxin, YUAN Meiling. Ni-Co-B-RE (Sm, Dy, Tb) Composite Electrodes: Preparation by Chemical Deposition Method and Electrocatalytic Hydrogen Evolution Performance [J]. Journal of Inorganic Materials, 2024, 39(5): 467-476. |
[5] | HE Qian, TANG Wanlan, HAN Bingkun, WEI Jiayuan, LÜ Wenxuan, TANG Zhaomin. pH Responsive Copper-Doped Mesoporous Silica Nanocatalyst for Enhanced Chemo-Chemodynamic Tumor Therapy [J]. Journal of Inorganic Materials, 2024, 39(1): 90-98. |
[6] | TUERHONG Munire, ZHAO Honggang, MA Yuhua, QI Xianhui, LI Yuchen, YAN Chenxiang, LI Jiawen, CHEN Ping. Construction and Photocatalytic Activity of Monoclinic Tungsten Oxide/Red Phosphorus Step-scheme Heterojunction [J]. Journal of Inorganic Materials, 2023, 38(6): 701-707. |
[7] | SUN Qiangqiang, CHEN Zixuan, YANG Ziyue, WANG Yimeng, CAO Baoyue. Amorphous Vanadium Oxide Loaded by Metallic Nickel-copper towards High-efficiency Electrocatalyzing Hydrogen Production [J]. Journal of Inorganic Materials, 2023, 38(6): 647-655. |
[8] | JIA Xin, LI Jinyu, DING Shihao, SHEN Qianqian, JIA Husheng, XUE Jinbo. Synergy Effect of Pd Nanoparticles and Oxygen Vacancies for Enhancing TiO2 Photocatalytic CO2 Reduction [J]. Journal of Inorganic Materials, 2023, 38(11): 1301-1308. |
[9] | CHEN Hanxiang, ZHOU Min, MO Zhao, YI Jianjian, LI Huaming, XU Hui. 0D/2D CoN/g-C3N4 Composites: Structure and Photocatalytic Performance for Hydrogen Production [J]. Journal of Inorganic Materials, 2022, 37(9): 1001-1008. |
[10] | AN Lin, WU Hao, HAN Xin, LI Yaogang, WANG Hongzhi, ZHANG Qinghong. Non-precious Metals Co5.47N/Nitrogen-doped rGO Co-catalyst Enhanced Photocatalytic Hydrogen Evolution Performance of TiO2 [J]. Journal of Inorganic Materials, 2022, 37(5): 534-540. |
[11] | WANG Hongli, WANG Nan, WANG Liying, SONG Erhong, ZHAO Zhankui. Hydrogen Generation from Formic Acid Boosted by Functionalized Graphene Supported AuPd Nanocatalysts [J]. Journal of Inorganic Materials, 2022, 37(5): 547-553. |
[12] | MA Hui, TAO Jianghui, WANG Yanni, HAN Yu, WANG Yabin, DING Xiuping. Gold Nanoparticles Supported on Silica & Titania Hybrid Mesoporous Spheres and Their Catalytic Performance Regulation [J]. Journal of Inorganic Materials, 2022, 37(4): 404-412. |
[13] | GAN Hongyu, FENG Yan, YANG Dehong, TIAN Yubin, LI Yang, XING Tao, LI Zhi, ZHAO Xuebo, DAI Pengcheng. Heteroatom-doped Biochar for Direct Dehydrogenation of Propane to Propylene [J]. Journal of Inorganic Materials, 2022, 37(10): 1058-1064. |
[14] | WANG Xiao, ZHU Zhijie, WU Zhiyi, ZHANG Chengcheng, CHEN Zhijie, XIAO Mengqi, LI Chaoran, HE Le. Preparation and Photothermal Catalytic Application of Powder-form Cobalt Plasmonic Superstructures [J]. Journal of Inorganic Materials, 2022, 37(1): 22-28. |
[15] | ZHU Yunna, CHEN Biqing, CHENG Tianshu, DU Chan, ZHANG Shimin, ZHAO Jing. Amorphous Nd-Ni-B/NF Rare Earth Composites: Preparation and HER Electrocatalytic Performance [J]. Journal of Inorganic Materials, 2021, 36(6): 637-644. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||