Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (2): 225-232.DOI: 10.15541/jim20230188
Special Issue: 【材料计算】材料模拟计算(202506); 【信息功能】MAX、MXene及其他二维材料(202506)
• RESEARCH ARTICLE • Previous Articles
ZHANG Yuchen1(), LU Zhiyao1, HE Xiaodong1, SONG Guangping1, ZHU Chuncheng2, ZHENG Yongting1, BAI Yuelei1(
)
Received:
2023-04-14
Revised:
2023-07-07
Published:
2023-08-21
Online:
2023-08-21
Contact:
BAI Yuelei, professor. E-mail: baiyl@hit.edu.cnAbout author:
ZHANG Yuchen(2001-), male, undergraduate student. E-mail: 1696409105@qq.com
Supported by:
CLC Number:
ZHANG Yuchen, LU Zhiyao, HE Xiaodong, SONG Guangping, ZHU Chuncheng, ZHENG Yongting, BAI Yuelei. Predictions of Phase Stability and Properties of S-group Elements Containing MAX Borides[J]. Journal of Inorganic Materials, 2024, 39(2): 225-232.
Compound | a/Å | c/Å | V/Å3 | Most competing phases | ΔHcomp/(eV·atom-1) |
---|---|---|---|---|---|
Zr2SB | 3.521 | 12.302 | 132.12 | 0.6Zr2S + 0.1Zr3S4 + 0.5ZrB2 | -0.0749 |
Exp.[ | 3.500 | 12.271 | 130.19 | ||
Hf2SB | 3.484 | 12.122 | 127.40 | 0.5Hf2S + 0.5HfS + 0.5HfB2 | -0.0512 |
Exp.[ | 3.467 | 12.105 | 126.01 | ||
Zr2SeB | 3.573 | 12.733 | 140.78 | 0.5Zr2Se + 0.5ZrSe + 0.5ZrB2 | -0.0259 |
Exp.[ | 3.644 | 12.632 | 145.27 | ||
Hf2SeB | 3.538 | 12.544 | 136.01 | 0.0185Hf23Se25 + 0.5370Hf2Se + 0.5HfB2 | -0.0838 |
Exp.[ | 3.523 | 12.478 | 134.11 | ||
Hf2TeB | 3.619 | 13.239 | 150.14 | 0.5Hf3Te2 + 0.5HfB2 | -0.0100 |
Exp.[ | 3.605 | 13.127 | 147.72 |
Table 1 M2AB (M = Zr, Hf; A = S, Se, Te) of which formation enthalpy ΔHcomp<0
Compound | a/Å | c/Å | V/Å3 | Most competing phases | ΔHcomp/(eV·atom-1) |
---|---|---|---|---|---|
Zr2SB | 3.521 | 12.302 | 132.12 | 0.6Zr2S + 0.1Zr3S4 + 0.5ZrB2 | -0.0749 |
Exp.[ | 3.500 | 12.271 | 130.19 | ||
Hf2SB | 3.484 | 12.122 | 127.40 | 0.5Hf2S + 0.5HfS + 0.5HfB2 | -0.0512 |
Exp.[ | 3.467 | 12.105 | 126.01 | ||
Zr2SeB | 3.573 | 12.733 | 140.78 | 0.5Zr2Se + 0.5ZrSe + 0.5ZrB2 | -0.0259 |
Exp.[ | 3.644 | 12.632 | 145.27 | ||
Hf2SeB | 3.538 | 12.544 | 136.01 | 0.0185Hf23Se25 + 0.5370Hf2Se + 0.5HfB2 | -0.0838 |
Exp.[ | 3.523 | 12.478 | 134.11 | ||
Hf2TeB | 3.619 | 13.239 | 150.14 | 0.5Hf3Te2 + 0.5HfB2 | -0.0100 |
Exp.[ | 3.605 | 13.127 | 147.72 |
Compound | c11/GPa | c12/GPa | c13/GPa | c33/GPa | c44/GPa | G/GPa | B/GPa | E/GPa | μ | G/B | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|
Zr2SB | 264 | 76 | 91 | 298 | 135 | 108 | 148 | 262 | 0.206 | 0.730 | This work |
Hf2SB | 296 | 74 | 97 | 318 | 147 | 122 | 160 | 292 | 0.196 | 0.763 | This work |
Zr2SeB | 252 | 64 | 83 | 277 | 125 | 105 | 137 | 250 | 0.197 | 0.766 | This work |
Hf2SeB | 275 | 66 | 90 | 292 | 134 | 113 | 148 | 270 | 0.195 | 0.764 | This work |
Zr2TeB | 198 | 67 | 78 | 225 | 104 | 79 | 118 | 194 | 0.226 | 0.669 | This work |
Hf2TeB | 225 | 61 | 88 | 257 | 119 | 93 | 130 | 225 | 0.211 | 0.715 | This work |
Ti3SiC2 | 366 | 94 | 100 | 352 | 153 | 142 | 187 | 339 | 0.192 | 0.759 | [ |
Ti3GeC2 | 357 | 94 | 97 | 333 | 143 | 142 | 182 | 340 | 0.196 | 0.780 | [ |
Hf2InC | 309 | 81 | 80 | 273 | 98 | 105 | 152 | 256 | 0.21 | 0.691 | [ |
Hf2SnC | 251 | 71 | 107 | 238 | 101 | 87 | 145 | 218 | 0.25 | 0.600 | [ |
Table 2 Second-order elastic constants and engineering elastic moduli of M2AB (M = Zr, Hf; A = S, Se, Te) and several typical MAX phases
Compound | c11/GPa | c12/GPa | c13/GPa | c33/GPa | c44/GPa | G/GPa | B/GPa | E/GPa | μ | G/B | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|
Zr2SB | 264 | 76 | 91 | 298 | 135 | 108 | 148 | 262 | 0.206 | 0.730 | This work |
Hf2SB | 296 | 74 | 97 | 318 | 147 | 122 | 160 | 292 | 0.196 | 0.763 | This work |
Zr2SeB | 252 | 64 | 83 | 277 | 125 | 105 | 137 | 250 | 0.197 | 0.766 | This work |
Hf2SeB | 275 | 66 | 90 | 292 | 134 | 113 | 148 | 270 | 0.195 | 0.764 | This work |
Zr2TeB | 198 | 67 | 78 | 225 | 104 | 79 | 118 | 194 | 0.226 | 0.669 | This work |
Hf2TeB | 225 | 61 | 88 | 257 | 119 | 93 | 130 | 225 | 0.211 | 0.715 | This work |
Ti3SiC2 | 366 | 94 | 100 | 352 | 153 | 142 | 187 | 339 | 0.192 | 0.759 | [ |
Ti3GeC2 | 357 | 94 | 97 | 333 | 143 | 142 | 182 | 340 | 0.196 | 0.780 | [ |
Hf2InC | 309 | 81 | 80 | 273 | 98 | 105 | 152 | 256 | 0.21 | 0.691 | [ |
Hf2SnC | 251 | 71 | 107 | 238 | 101 | 87 | 145 | 218 | 0.25 | 0.600 | [ |
Compound | M−A bond | M−B bond | kmin/kmax | Hmicro/GPa | Hmacro/GPa | |||
---|---|---|---|---|---|---|---|---|
d/nm | k/GPa | d/nm | k/GPa | |||||
Zr2SB | 0.26997 | 458.93 | 0.24124 | 612.75 | 0.7490 | 21.29 | 18.40 | |
Exp.[ | 0.26844 | 0.24032 | 9-12[ | |||||
Hf2SB | 0.26800 | 472.37 | 0.23722 | 652.32 | 0.7241 | 24.74 | 21.20 | |
Exp.[ | 0.26643 | 0.23688 | ||||||
Zr2SeB | 0.28062 | 442.87 | 0.24282 | 560.54 | 0.7901 | 21.09 | 19.30 | |
Exp.[ | 0.28071 | 0.24729 | ||||||
Hf2SeB | 0.27869 | 455.17 | 0.23899 | 595.24 | 0.7647 | 22.97 | 20.17 | |
Exp.[ | 0.27735 | 0.23789 | ||||||
Zr2TeB | 0.29743 | 432.53 | 0.24526 | 487.09 | 0.8880 | 14.45 | 13.12 | |
Hf2TeB | 0.29604 | 439.17 | 0.24156 | 517.33 | 0.8489 | 17.90 | 16.16 |
Table 3 Bond length, bond stiffness and kmin/kmax in M2AB (M = Zr, Hf; A = S, Se, Te)
Compound | M−A bond | M−B bond | kmin/kmax | Hmicro/GPa | Hmacro/GPa | |||
---|---|---|---|---|---|---|---|---|
d/nm | k/GPa | d/nm | k/GPa | |||||
Zr2SB | 0.26997 | 458.93 | 0.24124 | 612.75 | 0.7490 | 21.29 | 18.40 | |
Exp.[ | 0.26844 | 0.24032 | 9-12[ | |||||
Hf2SB | 0.26800 | 472.37 | 0.23722 | 652.32 | 0.7241 | 24.74 | 21.20 | |
Exp.[ | 0.26643 | 0.23688 | ||||||
Zr2SeB | 0.28062 | 442.87 | 0.24282 | 560.54 | 0.7901 | 21.09 | 19.30 | |
Exp.[ | 0.28071 | 0.24729 | ||||||
Hf2SeB | 0.27869 | 455.17 | 0.23899 | 595.24 | 0.7647 | 22.97 | 20.17 | |
Exp.[ | 0.27735 | 0.23789 | ||||||
Zr2TeB | 0.29743 | 432.53 | 0.24526 | 487.09 | 0.8880 | 14.45 | 13.12 | |
Hf2TeB | 0.29604 | 439.17 | 0.24156 | 517.33 | 0.8489 | 17.90 | 16.16 |
Fig. S2 Phonon dispersions (left) and density of states (right) of (a) Zr2SB, (b) Hf2SB, (c) Zr2SeB, (d) Hf2SeB, (e) Zr2TeB, and (f) Hf2TeB along the high symmetry directions
Compound | Included phase | a/Å | c/Å | V/Å3 | Most competing phases | ΔHcomp/(eV·atom-1) |
---|---|---|---|---|---|---|
Zr2SB | Zr, S, B, Zr2S, Zr3S4, Zr9S2, ZrS, ZrS2, ZrS3, ZrB2, B2S3, BS2 | 3.521 | 12.302 | 132.12 | 0.6Zr2S + 0.1Zr3S4 + 0.5ZrB2 | -0.0749 |
Exp.[ | 3.500 | 12.271 | 130.19 | |||
Zr3SB2 | 0.0833Zr9S2 + 0.5833ZrB2 + 0.8333Zr2SB | 0.0919 | ||||
Zr4SB3 | 0.1667Zr9S2 + 1.1667ZrB2 + 0.6667Zr2SB | 0.1588 | ||||
Hf2SB | Hf, S, B, Hf2S, HfS, HfS2, HfS3, HfB2, B2S3, BS2 | 3.484 | 12.122 | 127.40 | 0.5Hf2S + 0.5HfS + 0.5HfB2 | -0.0512 |
Exp.[ | 3.467 | 12.105 | 126.01 | |||
Hf3SB2 | 0.5Hf + 0.5HfB2 + Hf2SB | 0.0807 | ||||
Hf4SB3 | Hf + HfB2 + Hf2SB | 0.1422 | ||||
Zr2SeB | Zr, Se, B, Zr2Se, Zr2Se3, ZrSe, ZrSe2, ZrSe3, ZrB2, BSe2 | 3.573 | 12.733 | 140.78 | 0.5Zr2Se + 0.5ZrSe + 0.5ZrB2 | -0.0259 |
Exp.[ | 3.644 | 12.632 | 145.27 | |||
Zr3SeB2 | 0.5Zr + 0.5ZrB2 + Zr2SeB | 0.1649 | ||||
Zr4SeB3 | Zr + ZrB2 + Zr2SeB | 0.1559 | ||||
Hf2SeB | Hf, Se, B, Hf2Se, Hf2Se3, HfSe2, HfSe3, Hf23Se25, HfB2, BSe2 | 3.538 | 12.544 | 136.01 | 0.0185Hf23Se25 + 0.5370Hf2Se + 0.5HfB2 | -0.0838 |
Exp.[ | 3.523 | 12.478 | 134.11 | |||
Hf3SeB2 | 0.5Hf + 0.5HfB2 + Hf2SeB | 0.0836 | ||||
Hf4SeB3 | Hf + HfB2 + Hf2SeB | 0.1457 | ||||
Zr2TeB | Zr, Te, B, Zr2Te3, Zr3Te, Zr5Te4, ZrTe, ZrTe2, ZrTe3, ZrTe5, ZrB2 | 3.650 | 13.415 | 154.77 | 0.2143Zr5Te4 + 0.1429Zr3Te + 0.5ZrB2 | 0.0305 |
Zr3TeB2 | 0.1429Zr5Te4 + 0.4286Zr3Te + ZrB2 | 0.1321 | ||||
Zr4TeB3 | 0.0174Zr5Te4 + 0.7143Zr3Te + 1.5ZrB2 | 0.1960 | ||||
Hf2TeB | Hf, Te, B, Hf3Te2,Hf5Te4, HfTe2, HfTe5, HfB2 | 3.619 | 13.239 | 150.14 | 0.5Hf3Te2 + 0.5HfB2 | -0.0100 |
Exp.[ | 3.605 | 13.127 | 147.72 | |||
Hf3TeB2 | 0.5Hf + 0.5HfB2 + Hf2TeB | 0.0994 | ||||
Hf4TeB3 | Hf + HfB2 + Hf2TeB | 0.1613 |
Table S1 Formation enthalpy ΔHcomp of M2AB, M3AB2 and M4AB3 (M = Zr, Hf; A = S, Se, Te)
Compound | Included phase | a/Å | c/Å | V/Å3 | Most competing phases | ΔHcomp/(eV·atom-1) |
---|---|---|---|---|---|---|
Zr2SB | Zr, S, B, Zr2S, Zr3S4, Zr9S2, ZrS, ZrS2, ZrS3, ZrB2, B2S3, BS2 | 3.521 | 12.302 | 132.12 | 0.6Zr2S + 0.1Zr3S4 + 0.5ZrB2 | -0.0749 |
Exp.[ | 3.500 | 12.271 | 130.19 | |||
Zr3SB2 | 0.0833Zr9S2 + 0.5833ZrB2 + 0.8333Zr2SB | 0.0919 | ||||
Zr4SB3 | 0.1667Zr9S2 + 1.1667ZrB2 + 0.6667Zr2SB | 0.1588 | ||||
Hf2SB | Hf, S, B, Hf2S, HfS, HfS2, HfS3, HfB2, B2S3, BS2 | 3.484 | 12.122 | 127.40 | 0.5Hf2S + 0.5HfS + 0.5HfB2 | -0.0512 |
Exp.[ | 3.467 | 12.105 | 126.01 | |||
Hf3SB2 | 0.5Hf + 0.5HfB2 + Hf2SB | 0.0807 | ||||
Hf4SB3 | Hf + HfB2 + Hf2SB | 0.1422 | ||||
Zr2SeB | Zr, Se, B, Zr2Se, Zr2Se3, ZrSe, ZrSe2, ZrSe3, ZrB2, BSe2 | 3.573 | 12.733 | 140.78 | 0.5Zr2Se + 0.5ZrSe + 0.5ZrB2 | -0.0259 |
Exp.[ | 3.644 | 12.632 | 145.27 | |||
Zr3SeB2 | 0.5Zr + 0.5ZrB2 + Zr2SeB | 0.1649 | ||||
Zr4SeB3 | Zr + ZrB2 + Zr2SeB | 0.1559 | ||||
Hf2SeB | Hf, Se, B, Hf2Se, Hf2Se3, HfSe2, HfSe3, Hf23Se25, HfB2, BSe2 | 3.538 | 12.544 | 136.01 | 0.0185Hf23Se25 + 0.5370Hf2Se + 0.5HfB2 | -0.0838 |
Exp.[ | 3.523 | 12.478 | 134.11 | |||
Hf3SeB2 | 0.5Hf + 0.5HfB2 + Hf2SeB | 0.0836 | ||||
Hf4SeB3 | Hf + HfB2 + Hf2SeB | 0.1457 | ||||
Zr2TeB | Zr, Te, B, Zr2Te3, Zr3Te, Zr5Te4, ZrTe, ZrTe2, ZrTe3, ZrTe5, ZrB2 | 3.650 | 13.415 | 154.77 | 0.2143Zr5Te4 + 0.1429Zr3Te + 0.5ZrB2 | 0.0305 |
Zr3TeB2 | 0.1429Zr5Te4 + 0.4286Zr3Te + ZrB2 | 0.1321 | ||||
Zr4TeB3 | 0.0174Zr5Te4 + 0.7143Zr3Te + 1.5ZrB2 | 0.1960 | ||||
Hf2TeB | Hf, Te, B, Hf3Te2,Hf5Te4, HfTe2, HfTe5, HfB2 | 3.619 | 13.239 | 150.14 | 0.5Hf3Te2 + 0.5HfB2 | -0.0100 |
Exp.[ | 3.605 | 13.127 | 147.72 | |||
Hf3TeB2 | 0.5Hf + 0.5HfB2 + Hf2TeB | 0.0994 | ||||
Hf4TeB3 | Hf + HfB2 + Hf2TeB | 0.1613 |
Compound | Curve fitting equation (300-1300 K) | TEC (300-1300 K)/ K-1 |
---|---|---|
Zr2SB | CP = 0.83×10-2T + 96.9 - 1.28×106T-2 | 10.97×10-6 K-1 |
Hf2SB | CP = 0.74×10-2T + 96.6 - 1.25×106T-2 | 9.66×10-6 K-1 |
Zr2SeB | CP = 0.82×10-2T + 96.7 - 1.06×106T-2 | 11.11×10-6 K-1 |
Hf2SeB | CP = 1.28×10-2T + 94.4 - 0.89×106T-2 | 10.17×10-6 K-1 |
Zr2TeB | CP = 1.07×10-2T + 94.7 - 0.84×106T-2 | 12.63×10-6 K-1 |
Hf2TeB | CP = 0.83×10-2T + 96.1 - 0.87×106T-2 | 10.07×10-6 K-1 |
Table S2 Heat capacity at constant pressure and the average linear thermal expansion coefficient of M2AB (M = Zr, Hf; A = S, Se, Te) in the temperature range of 300-1300 K
Compound | Curve fitting equation (300-1300 K) | TEC (300-1300 K)/ K-1 |
---|---|---|
Zr2SB | CP = 0.83×10-2T + 96.9 - 1.28×106T-2 | 10.97×10-6 K-1 |
Hf2SB | CP = 0.74×10-2T + 96.6 - 1.25×106T-2 | 9.66×10-6 K-1 |
Zr2SeB | CP = 0.82×10-2T + 96.7 - 1.06×106T-2 | 11.11×10-6 K-1 |
Hf2SeB | CP = 1.28×10-2T + 94.4 - 0.89×106T-2 | 10.17×10-6 K-1 |
Zr2TeB | CP = 1.07×10-2T + 94.7 - 0.84×106T-2 | 12.63×10-6 K-1 |
Hf2TeB | CP = 0.83×10-2T + 96.1 - 0.87×106T-2 | 10.07×10-6 K-1 |
[1] |
OPEKA M M, TALMY I G, WUCHINA E J, et al. Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds. Journal of the European ceramic Society, 1999, 19(13/14): 2405.
DOI URL |
[2] |
ZHOU H J, ZHANG X Y, GAO L, et al. Ablation properties of ZrB2-SiC ultra-high temperature ceramic coatings. Journal of Inorganic Materials, 2013, 28(3): 256.
DOI URL |
[3] |
WILEY D, MANNING W, HUNTER JR O. Elastic properties of polycrystalline TiB2, ZrB2 and HfB2 from room temperature to 1300 K. Journal of the Less Common Metals, 1969, 18(2): 149.
DOI URL |
[4] |
GAO Dong, ZHANG Y, XU C L, et al. Formation mechanism of zircon phase in ZrB2-SiC ceramic composites during oxidation. Journal of Inorganic Materials, 2011, 26(4): 433.
DOI |
[5] |
BARSOUM M W. The MN+1AXN phases: a new class of solids: thermodynamically stable nanolaminates. Progress in Solid State Chemistry, 2000, 28(1-4): 201.
DOI URL |
[6] |
BAI Y, HE X, SUN Y, et al. Chemical bonding and elastic properties of Ti3AC2 phases (A= Si, Ge, and Sn): a first-principle study. Solid State Sciences, 2010, 12(7): 1220.
DOI URL |
[7] | RACKL T, EISENBURGER L, NIKLAUS R, et al. Syntheses and physical properties of the MAX phase boride Nb2SB and the solid solutions Nb2SBxC1-x(x= 0-1). Physical Review Materials, 2019, 3(5): 054001. |
[8] |
RACKL T, JOHRENDT D. The MAX phase borides Zr2SB and Hf2SB. Solid State Sciences, 2020, 106: 106316.
DOI URL |
[9] |
ZHANG Q, ZHOU Y, SAN X, et al. Zr2SeB and Hf2SeB: two new MAB phase compounds with the Cr2AlC-type MAX phase (211 phase) crystal structures. Journal of Advanced Ceramics, 2022, 11(11): 1764.
DOI |
[10] |
ZHANG Q, ZHOU Y, SAN X, et al. Thermal explosion synthesis of first Te-containing layered ternary Hf2TeB MAX phase. Journal of the European Ceramic Society, 2023, 43(1): 173.
DOI URL |
[11] |
QIN Y, ZHOU Y, FAN L, et al. Synthesis and characterization of ternary layered Nb2SB ceramics fabricated by spark plasma sintering. Journal of Alloys and Compounds, 2021, 878: 160344.
DOI URL |
[12] |
ZHANG Q, FU S, WAN D, et al. Synthesis and property characterization of ternary laminar Zr2SB ceramic. Journal of Advanced Ceramics, 2022, 11(5): 825.
DOI |
[13] | BARSOUM M W. MAX phases: properties of machinable ternary carbides and nitrides. John Wiley & Sons, 2013. |
[14] |
BARSOUM M, ZHEN T, KALIDINDI S, et al. Fully reversible, dislocation-based compressive deformation of Ti3SiC2 to 1 GPa. Nature Materials, 2003, 2(2): 107.
DOI |
[15] |
LIU Y, COOPER V R, WANG B, et al. Discovery of ABO3 perovskites as thermal barrier coatings through high-throughput first principles calculations. Materials Research Letters, 2019, 7(4): 145.
DOI URL |
[16] |
TOGO A, CHAPUT L, TANAKA I, et al. First-principles phonon calculations of thermal expansion in Ti3SiC2, Ti3AlC2, and Ti3GeC2. Physical Review B, 2010, 81(17): 174301.
DOI URL |
[17] |
BAI Y, HE X, WANG R. Lattice dynamics of Al-containing MAX-phase carbides: a first-principle study. Journal of Raman Spectroscopy, 2015, 46(9): 784.
DOI URL |
[18] |
DAHLQVIST M, ALLING B, ROS N J. Stability trends of MAX phases from first principles. Physical Review B, 2010, 81(22): 220102.
DOI URL |
[19] |
SHEN Y, SAUNDERS C N, BERNAL C M, et al. Anharmonic origin of the giant thermal expansion of NaBr. Physical Review Letters, 2020, 125(8): 085504.
DOI URL |
[20] | QI X X, SONG G P, YIN W L, et al. Analysis on phase stability and mechanical property of newly-discovered ternary layered boride Cr4AlB4. Journal of Inorganic Materials, 2020, 35(1): 53. |
[21] |
QI X, YIN W, JIN S, et al. Density-functional-theory predictions of mechanical behaviour and thermal properties as well as experimental hardness of the Ga-bilayer Mo2Ga2C. Journal of Advanced Ceramics, 2022, 11: 273.
DOI |
[22] |
QI X, HE X, YIN W, et al. Stability trend, weak bonding, and magnetic properties of the Al-and Si-containing ternary-layered borides MAB phases. Journal of the American Ceramic Society, 2023, 106(2): 1513.
DOI URL |
[23] |
KRESSE G, FURTHM LLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996, 54(16): 11169.
DOI URL |
[24] |
POPOOLA A, OLUYAMO S. Physical properties of some noble metal compounds from PAW-DFT calculations. Journal of Science and Technology (Ghana), 2014, 34(3): 47.
DOI URL |
[25] |
ZECCA L, GORI-GIORGI P, MORONI S, et al. Local density functional for the short-range part of the electron-electron interaction. Physical Review B, 2004, 70(20): 205127.
DOI URL |
[26] |
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865.
DOI PMID |
[27] |
TOGO A, OBA F, TANAKA I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Physical Review B, 2008, 78(13): 134106.
DOI URL |
[28] |
HILL R. The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society Section A, 1952, 65(5): 349.
DOI URL |
[29] |
WOLVERTON C, ZUNGER A. First-principles theory of short-range order, electronic excitations, and spin polarization in Ni-V and Pd-V alloys. Physical Review B, 1995, 52(12): 8813.
PMID |
[30] |
WANG J, YE T N, GONG Y, et al. Discovery of hexagonal ternary phase Ti2InB2 and its evolution to layered boride TiB. Nature Communications, 2019, 10: 2284.
DOI |
[31] |
SAKAMAKI K, WADA H, NOZAKI H, et al. Carbosulfide superconductor. Solid State Communications, 1999, 112(6): 323.
DOI URL |
[32] |
KHAZAEI M, WANG J, ESTILI M, et al. Novel MAB phases and insights into their exfoliation into 2D MBenes. Nanoscale, 2019, 11(23): 11305.
DOI PMID |
[33] | BORN M, HUANG K, LAX M. Dynamical theory of crystal lattices. American Journal of Physics, 1955, 23(7): 474. |
[34] |
BARSOUM M W, RADOVIC M. Elastic and mechanical properties of the MAX phases. Annual Review of Materials Research, 2011, 41: 195.
DOI URL |
[35] |
PUGH S. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1954, 45(367): 823.
DOI URL |
[36] |
BAI Y, QI X, DUFF A, et al. Density functional theory insights into ternary layered boride MoAlB. Acta Materialia, 2017, 132: 69.
DOI URL |
[37] |
ALI M, HOSSAIN M, UDDIN M, et al. DFT insights into new B-containing 212 MAX phases: Hf2AB2 (A= In, Sn). Journal of Alloys and Compounds, 2021, 860: 158408.
DOI URL |
[38] |
MIAO N, WANG J, GONG Y, et al. Computational prediction of boron-based MAX phases and MXene derivatives. Chemistry of Materials, 2020, 32(16): 6947.
DOI URL |
[39] |
BOUHEMADOU A. First-principles study of structural, electronic and elastic properties of Nb4AlC3. Brazilian Journal of Physics, 2010, 40: 52.
DOI URL |
[40] |
CHEN XQ, NIU H, LI D, et al. Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics, 2011, 19(9): 1275.
DOI URL |
[41] |
GUO X, LI L, LIU Z, et al. Hardness of covalent compounds: roles of metallic component and d valence electrons. Journal of Applied Physics, 2008, 104(2): 023503.
DOI URL |
[42] |
XIANG H, FENG Z, LI Z, et al. First-principles investigations on elevated temperature elastic and thermodynamic properties of ZrB2 and HfB2. Journal of the American Ceramic Society, 2017, 100(8): 3662.
DOI URL |
[43] |
BLANCO M, FRANCISCO E, LUANA V. GIBBS: isothermal- isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Computer Physics Communications, 2004, 158(1): 57.
DOI URL |
[1] | SUN Yuxuan, WANG Zheng, SHI Xue, SHI Ying, DU Wentong, MAN Zhenyong, ZHENG Liaoying, LI Guorong. Defect Dipole Thermal-stability to the Electro-mechanical Properties of Fe Doped PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(5): 545-551. |
[2] | CHEN Yi, QIU Haipeng, CHEN Mingwei, XU Hao, CUI Heng. SiC/SiC Composite: Matrix Boron Modification and Mechanical Properties [J]. Journal of Inorganic Materials, 2025, 40(5): 504-510. |
[3] | CUI Ning, ZHANG Yuxin, WANG Lujie, LI Tongyang, YU Yuan, TANG Huaguo, QIAO Zhuhui. Single-phase Formation Process and Carbon Vacancy Regulation of (TiVNbMoW)Cx High-entropy Ceramics [J]. Journal of Inorganic Materials, 2025, 40(5): 511-520. |
[4] | LI Ziwei, GONG Weilu, CUI Haifeng, YE Li, HAN Weijian, ZHAO Tong. (Zr, Hf, Nb, Ta, W)C-SiC Composite Ceramics: Preparation via Precursor Route and Properties [J]. Journal of Inorganic Materials, 2025, 40(3): 271-280. |
[5] | GAO Chenguang, SUN Xiaoliang, CHEN Jun, LI Daxin, CHEN Qingqing, JIA Dechang, ZHOU Yu. SiBCN-rGO Ceramic Fibers Based on Wet Spinning Technology: Microstructure, Mechanical and Microwave-absorbing Properties [J]. Journal of Inorganic Materials, 2025, 40(3): 290-296. |
[6] | MU Haojie, ZHANG Yuanjiang, YU Bin, FU Xiumei, ZHOU Shibin, LI Xiaodong. Preparation and Properties of ZrO2 Doped Y2O3-MgO Nanocomposite Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 281-289. |
[7] | WANG Yueyue, HUANG Jiahui, KONG Hongxing, LI Huaizhu, YAO Xiaohong. Silver Loaded Radial Mesoporous Silica: Preparation and Application in Dental Resins [J]. Journal of Inorganic Materials, 2025, 40(1): 77-83. |
[8] | FAN Wugang, CAO Xiong, ZHOU Xiang, LI Ling, ZHAO Guannan, ZHANG Zhaoquan. Anticorrosion Performance of 8YSZ Ceramics in Simulated Aqueous Environment of Pressurized Water Reactor [J]. Journal of Inorganic Materials, 2024, 39(7): 803-809. |
[9] | WU Yuhao, PENG Renci, CHENG Chunyu, YANG Li, ZHOU Yichun. First-principles Study on Mechanical Properties and Melting Curve of HfxTa1-xC System [J]. Journal of Inorganic Materials, 2024, 39(7): 761-768. |
[10] | JIN Yuxiang, SONG Erhong, ZHU Yongfu. First-principles Investigation of Single 3d Transition Metals Doping Graphene Vacancies for CO2 Electroreduction [J]. Journal of Inorganic Materials, 2024, 39(7): 845-852. |
[11] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[12] | SUN Haiyang, JI Wei, WANG Weimin, FU Zhengyi. Design, Fabrication and Properties of Periodic Ordered Structural Composites with TiB-Ti Units [J]. Journal of Inorganic Materials, 2024, 39(6): 662-670. |
[13] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[14] | LIU Guoang, WANG Hailong, FANG Cheng, HUANG Feilong, YANG Huan. Effect of B4C Content on Mechanical Properties and Oxidation Resistance of (Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 697-706. |
[15] | SU Yi, SHI Yangfan, JIA Chenglan, CHI Pengtao, GAO Yang, MA Qingsong, CHEN Sian. Microstructure and Properties of C/HfC-SiC Composites Prepared by Slurry Impregnation Assisted Precursor Infiltration Pyrolysis [J]. Journal of Inorganic Materials, 2024, 39(6): 726-732. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||