Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (7): 845-852.DOI: 10.15541/jim20230549
JIN Yuxiang1(), SONG Erhong2(), ZHU Yongfu1()
Received:
2023-11-30
Revised:
2024-02-06
Published:
2024-07-20
Online:
2024-03-05
Contact:
ZHU Yongfu, professor. E-mail: yfzhu@jlu.edu.cn;About author:
JIN Yuxiang (1999-), male, Master candidate. E-mail: jinyx21@mails.jlu.edu.cn
Supported by:
CLC Number:
JIN Yuxiang, SONG Erhong, ZHU Yongfu. First-principles Investigation of Single 3d Transition Metals Doping Graphene Vacancies for CO2 Electroreduction[J]. Journal of Inorganic Materials, 2024, 39(7): 845-852.
TM@CSV | Max length of TM-C/Å | Bader charge/|e| |
---|---|---|
Sc@CSV | 2.08 | +1.50 |
Ti@CSV | 1.94 | +1.37 |
V@CSV | 1.89 | +1.22 |
Cr@CSV | 1.86 | +1.35 |
Mn@CSV | 1.83 | +1.00 |
Fe@CSV | 1.76 | +0.67 |
Co@CSV | 1.76 | +0.72 |
Ni@CSV | 1.79 | +0.63 |
Cu@CSV | 1.89 | +0.02 |
Zn@CSV | 1.96 | +0.76 |
Table S1 Max lengthes of TM-C and Bader charges of TM for TM@CSV
TM@CSV | Max length of TM-C/Å | Bader charge/|e| |
---|---|---|
Sc@CSV | 2.08 | +1.50 |
Ti@CSV | 1.94 | +1.37 |
V@CSV | 1.89 | +1.22 |
Cr@CSV | 1.86 | +1.35 |
Mn@CSV | 1.83 | +1.00 |
Fe@CSV | 1.76 | +0.67 |
Co@CSV | 1.76 | +0.72 |
Ni@CSV | 1.79 | +0.63 |
Cu@CSV | 1.89 | +0.02 |
Zn@CSV | 1.96 | +0.76 |
TM@CDV | Max length of TM-C/Å | Bader charge/|e| |
---|---|---|
Sc@CDV | 2.24 | +1.32 |
Ti@CDV | 2.07 | +0.94 |
V@CDV | 2.02 | +1.22 |
Cr@CDV | 2.01 | +0.93 |
Mn@CDV | 1.99 | +0.64 |
Fe@CDV | 1.97 | +0.61 |
Co@CDV | 1.95 | +0.34 |
Ni@CDV | 1.91 | +0.18 |
Cu@CDV | 1.90 | +0.18 |
Zn@CDV | 1.93 | +0.10 |
Table S2 Max lengthes of TM-C and Bader charges of TM for TM@CDV
TM@CDV | Max length of TM-C/Å | Bader charge/|e| |
---|---|---|
Sc@CDV | 2.24 | +1.32 |
Ti@CDV | 2.07 | +0.94 |
V@CDV | 2.02 | +1.22 |
Cr@CDV | 2.01 | +0.93 |
Mn@CDV | 1.99 | +0.64 |
Fe@CDV | 1.97 | +0.61 |
Co@CDV | 1.95 | +0.34 |
Ni@CDV | 1.91 | +0.18 |
Cu@CDV | 1.90 | +0.18 |
Zn@CDV | 1.93 | +0.10 |
Fig. 1 Analyses for Sc@CDV (a) Structure of Sc@CDV; (b) Charge density difference of Sc@CDV with an isovalue of 0.005 e/Å3 (positive and negative charges are shown in green and yellow); (c) PDOS diagram of Sc@CDV; (d) AIMD simulations of Sc@CDV (purple: Sc, brown: C); Colorful figures are available on website
Fig. 2 Structure of H+ adsorption on Sc@CDV (a) and energy changes of H+ adsorption on TM@C (b) Green in (a): H; Colorful figures are available on website
Fig. 3 Gibbs free energy profiles and the competitive reaction analysis (a-c) Free energies of Sc@CSV (a), Sc@CDV (b) and Ti@CDV (c); (d) CO2RR vs HER for TM@C; Colorful figures are available on website
Fig. 4 Electron distributions of Ti@CDV, Sc@CSV and Sc@CDV (a-c) PDOS of Ti@CDV (a), Sc@CSV (b) and Sc@CDV (c) (Gray dashed lines mark the positions of the Fermi energy levels); (d) Eb(*HCOOH) and Eb(*CO2) of Ti@CDV, Sc@CSV and Sc@CDV; The d-band center as an average of the d-band energies; Colorful figures are available on website
[1] | FENG Q, LIU D, ZHANG Y, et al. Thermodynamic and first-principles assessments of materials for solar-driven CO2 splitting using two-step thermochemical cycles. Journal of Inorganic Materials, 2022, 37(2): 223. |
[2] | TIAN J, MA X, WANG M, et al. Sn quantum dots for electrocatalytic reduction of CO2 to HCOOH. Journal of Inorganic Materials, 2021, 36(12): 1337. |
[3] | CHEN S, LÜ G. CO2 methanation over Ru/TiO2 catalysts under UV irradiation and heating. Journal of Inorganic Materials, 2014, 29(12): 1287. |
[4] | MIKKELSEN M, JØRGENSEN M, KREBS F C. The teraton challenge. a review of fixation and transformation of carbon dioxide. Energy & Environmental Science, 2010, 3(1): 43. |
[5] | XU X, GOU X, ZHANG W, et al. A bibliometric analysis of carbon neutrality: research hotspots and future directions. Heliyon, 2023, 9(8): e18763. |
[6] | HUA Y, WANG J, MIN T, et al. Electrochemical CO2 conversion towards syngas: recent catalysts and improving strategies for ratio-tunable syngas. Journal of Power Sources, 2022, 535: 231453. |
[7] | HE R, XU N, HASAN I M U, et al. Advances in electrolyzer design and development for electrochemical CO2 reduction. EcoMat, 2023, 5(7): e12346. |
[8] | KOUA K A J, PENG J, ZHANG P, et al. Unveiling the magnetic ordering effect in La-doped Ti3C2O2 MXenes on electrocatalytic CO2 reduction. Journal of Materials Chemistry A, 2024, 12(1): 303. |
[9] | ROY S C, VARGHESE O K, PAULOSE M, et al. Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano, 2010, 4(3): 1259. |
[10] | ZHANG W, JIN Z, CHEN Z. Rational-designed principles for electrochemical and photoelectrochemical upgrading of CO2 to value-added chemicals. Advanced Science, 2022, 9(9): 2105204. |
[11] | LI N, LIU J, DONG B X, et al. Polyoxometalate-based compounds for photo-and electrocatalytic applications. Angewandte Chemie International Edition, 2020, 59(47): 20779. |
[12] | WU Q J, LIANG J, HUANG Y B, et al. Thermo-, electro-, and photocatalytic CO2 conversion to value-added products over porous metal/covalent organic frameworks. Accounts of Chemical Research, 2022, 55(20): 2978. |
[13] | NIE X, ESOPI M R, JANIK M J, et al. Selectivity of CO2 reduction on copper electrodes: the role of the kinetics of elementary steps. Angewandte Chemie International Edition, 2013, 125(9): 2519. |
[14] | JIA Y, ZHANG L, DU A, et al. Defect graphene as a trifunctional catalyst for electrochemical reactions. Advanced Materials, 2016, 28(43): 9532. |
[15] | XUE Z H, ZHANG S N, LIN Y X, et al. Electrochemical reduction of N2 into NH3 by donor-acceptor couples of Ni and Au nanoparticles with a 67.8% Faradaic efficiency. Journal of the American Chemical Society, 2019, 141(38): 14976. |
[16] | JONES J P, PRAKASH G K S, OLAH G A. Electrochemical CO2 reduction: recent advances and current trends. Israel Journal of Chemistry, 2014, 54(10): 1451. |
[17] | ZHAO K, QUAN X. Carbon-based materials for electrochemical reduction of CO2 to C2+ oxygenates: recent progress and remaining challenges. ACS Catalysis, 2021, 11(4): 2076. |
[18] | DENG J, IÑIGUEZ J A, LIU C. Electrocatalytic nitrogen reduction at low temperature. Joule, 2018, 2(5): 846. |
[19] | AZOFRA L M, LI N, MACFARLANE D R, et al. Promising prospects for 2D d2-d4 M3C2 transition metal carbides (MXenes) in N2 capture and conversion into ammonia. Energy & Environmental Science, 2016, 9(8): 2545. |
[20] | LI B, WU Y, LI N, et al. Single-metal atoms supported on MBenes for robust electrochemical hydrogen evolution. ACS Applied Materials & Interfaces, 2020, 12(8): 9261. |
[21] | FU Y, BI M, LI C, et al. Research progress on non-noble metal/nitrogen-doped carbon composite materials in electrocatalytic oxygen evolution reaction. Journal of Inorganic Materials, 2022, 37(2): 163. |
[22] | LI Z, SUN Q, CHEN S, et al. Hydrothermal synthesized nickel copper composite phosphides as bifunctional electrocatalysts for hydrogen evolution and hydrazine oxidation. Journal of Inorganic Materials, 2020, 35(10): 1149. |
[23] | FRANCKE R, SCHILLE B, ROEMELT M. Homogeneously catalyzed electroreduction of carbon dioxide-methods, mechanisms, and catalysts. Chemical Reviews, 2018, 118(9): 4631. |
[24] | TODOROVA T K, SCHREIBER M W, FONTECAVE M. Mechanistic understanding of CO2 reduction reaction (CO2RR) toward multicarbon products by heterogeneous copper-based catalysts. ACS Catalysis, 2020, 10(3): 1754. |
[25] | WANG G, CHEN J, DING Y, et al. Electrocatalysis for CO2 conversion: from fundamentals to value-added products. Chemical Society Reviews, 2021, 50(8): 4993. |
[26] | MA W, HE X, WANG W, et al. Electrocatalytic reduction of CO2 and CO to multi-carbon compounds over Cu-based catalysts. Chemical Society Reviews, 2021, 50(23): 12897. |
[27] | PENG J, SHI Z, JIANG J, et al. Charge-orbital synergistic engineering of TM@Ti3C2O1-xBx for highly selective CO2 electrochemical reduction. Materials Horizons, 2023, 10(10): 4278. |
[28] | QIAO B, LIU J, ALLARD L, et al. Single-atom catalysis: Pt1/FeOx for CO oxidation and preferential oxidation of CO in H2. Microscopy and Microanalysis, 2012, 18(S2): 350. |
[29] | WANG X, ZHANG Y, WU J, et al. Single-atom engineering to ignite 2D transition metal dichalcogenide based catalysis: fundamentals, progress, and beyond. Chemical Reviews, 2022, 122(1): 1273. |
[30] | CHENG N, ZHANG L, DOYLE-DAVIS K, et al. Single-atom catalysts: from design to application. Electrochemical Energy Reviews, 2019, 2(4): 539. |
[31] | LI M, WANG H, LUO W, et al. Heterogeneous single-atom catalysts for electrochemical CO2 reduction reaction. Advanced Materials, 2020, 32(34): 2001848. |
[32] | QU G, WEI K, PAN K, et al. Emerging materials for electrochemical CO2 reduction: progress and optimization strategies of carbon-based single-atom catalysts. Nanoscale, 2023, 15(8): 3666. |
[33] | WANG Y, LIU Y, LIU W, et al. Regulating the coordination structure of metal single atoms for efficient electrocatalytic CO2 reduction. Energy & Environmental Science, 2020, 13(12): 4609. |
[34] | CHEN X, ZHAO X, KONG Z, et al. Unravelling the electrochemical mechanisms for nitrogen fixation on single transition metal atoms embedded in defective graphitic carbon nitride. Journal of Materials Chemistry A, 2018, 6(44): 21941. |
[35] | HUANG B, LI N, ONG W J, et al. Single atom-supported MXene: how single-atomic-site catalysts tune the high activity and selectivity of electrochemical nitrogen fixation. Journal of Materials Chemistry A, 2019, 7(48): 27620. |
[36] | YAO M, SHI Z, ZHANG P, et al. Density functional theory study of single metal atoms embedded into MBene for electrocatalytic conversion of N2 to NH3. ACS Applied Nano Materials, 2020, 3(10): 9870. |
[37] | DU Z, CHEN X, HU W, et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries. Journal of the American Chemical Society, 2019, 141(9): 3977. |
[38] | GU J, HSU C S, BAI L, et al. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science, 2019, 364(6445): 1091. |
[39] | ZHANG Z, ZHU J, CHEN S, et al. Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction. Angewandte Chemie International Edition, 2023, 62(3): e202215136. |
[40] | HAN S S, LIU L Y, SHAN Y K, et al. Research of graphene/antireflection nanostructure composite transparent conducting films. Journal of Inorganic Materials, 2017, 32(2): 197. |
[41] | WANG Y, LI S, YANG H, et al. Progress in the functional modification of graphene/graphene oxide: a review. RSC Advances, 2020, 10(26): 15328. |
[42] | WANG J, JIN X, LI C, et al. Graphene and graphene derivatives toughening polymers: toward high toughness and strength. Chemical Engineering Journal, 2019, 370: 831. |
[43] | HE J L, SONG E H, WANG L J, et al. DFT Calculation of NO adsorption on Cr doped graphene. Journal of Inorganic Materials, 2021, 36(10): 1047. |
[44] | XING W W, ZHANG C X, FAN S C, et al. Research progress on resonant characteristics of graphene. Journal of Inorganic Materials, 2016, 31(7): 673. |
[45] | NAN H, WANG W L, HAN J H, et al. Low-cost preparation of graphene papers from chemical reduction with FeI2/Ni2+ for conductivity and catalytic property. Journal of Inorganic Materials, 2017, 32(9): 997. |
[46] | CHOI J H, LEE J, BYEON M, et al. Graphene-based gas sensors with high sensitivity and minimal sensor-to-sensor variation. ACS Applied Nano Materials, 2020, 3(3): 2257. |
[47] | GATTRELL M, GUPTA N, CO A. A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. Journal of Electroanalytical Chemistry, 2006, 594(1): 1. |
[48] | LI C W, KANAN M W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. Journal of the American Chemical Society, 2012, 134(17): 7231. |
[49] | SCHOUTEN K J P, PÉREZ GALLENT E, KOPER M T. Structure sensitivity of the electrochemical reduction of carbon monoxide on copper single crystals. ACS Catalysis, 2013, 3(6): 1292. |
[50] | REN D, DENG Y, HANDOKO A D, et al. Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper (I) oxide catalysts. ACS Catalysis, 2015, 5(5): 2814. |
[51] | RESKE R, MISTRY H, BEHAFARID F, et al. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. Journal of the American Chemical Society, 2014, 136(19): 6978. |
[52] | JIAO L, YANG W, WAN G, et al. Single-atom electrocatalysts from multivariate metal-organic frameworks for highly selective reduction of CO2 at low pressures. Angewandte Chemie International Edition, 2020, 59(46): 20589. |
[53] | KRESSE G, FURTHMÜLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1996, 6(1): 15. |
[54] | KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996, 54(16): 11169. |
[55] | PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865. |
[56] | KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 1999, 59(3): 1758. |
[57] | BLÖCHL P E. Projector augmented-wave method. Physical Review B, 1994, 50(24): 17953. |
[58] | GRIMME S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 2006, 27(15): 1787. |
[59] | SKÚLASON E, BLIGAARD T, GUDMUNDSDÓTTIR S, et al. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Physical Chemistry Chemical Physics, 2012, 14(3): 1235. |
[60] | LI J, XU J, ZHAO J, et al. Modulation of oxygen-etching for generating nickel single atoms for efficient electroreduction of CO2 to syngas (CO/H2). Journal of Catalysis, 2023, 421: 332. |
[61] | LI N, WANG X, LU X, et al. Comprehensive mechanism of CO2 electroreduction on non-noble metal single-atom catalysts of Mo2CS2-MXene. Chemistry-A European Journal, 2021, 27(71): 17900. |
[62] | LI N, CHEN X, ONG W J, et al. Understanding of electrochemical mechanisms for CO2 capture and conversion into hydrocarbon fuels in transition-metal carbides (MXenes). ACS Nano, 2017, 11(11): 10825. |
[63] | JIAO S, FU X, HUANG H. Descriptors for the evaluation of electrocatalytic reactions: d-band theory and beyond. Advanced Functional Materials, 2022, 32(4): 2107651. |
[64] | NØRSKOV J K, BLIGAARD T, LOGADOTTIR A, et al. Trends in the exchange current for hydrogen evolution. Journal of The Electrochemical Society, 2005, 152(3): J23. |
[65] | NØRSKOV J K, ABILD-PEDERSEN F, STUDT F, et al. Density functional theory in surface chemistry and catalysis. Proceedings of the National Academy of Sciences, 2011, 108(3): 937. |
[66] | KITCHIN J R, NØRSKOV J K, BARTEAU M A, et al. Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Physical Review Letters, 2004, 93(15): 156801. |
[1] | WU Yuhao, PENG Renci, CHENG Chunyu, YANG Li, ZHOU Yichun. First-principles Study on Mechanical Properties and Melting Curve of HfxTa1-xC System [J]. Journal of Inorganic Materials, 2024, 39(7): 761-768. |
[2] | WANG Weihua, ZHANG Leining, DING Feng, DAI Bing, HAN Jiecai, ZHU Jiaqi, JIA Yi, Yang Yu. Heteroepitaxial Diamond Nucleation and Growth on Iridium: First-principle Calculation [J]. Journal of Inorganic Materials, 2024, 39(4): 416-422. |
[3] | ZHANG Yuchen, LU Zhiyao, HE Xiaodong, SONG Guangping, ZHU Chuncheng, ZHENG Yongting, BAI Yuelei. Predictions of Phase Stability and Properties of S-group Elements Containing MAX Borides [J]. Journal of Inorganic Materials, 2024, 39(2): 225-232. |
[4] | WU Xiaowei, ZHANG Han, ZENG Biao, MING Chen, SUN Yiyang. Comparison of Hybrid Functionals HSE and PBE0 in Calculating the Defect Properties of CsPbI3 [J]. Journal of Inorganic Materials, 2023, 38(9): 1110-1116. |
[5] | WEN Zhiqin, HUANG Binrong, LU Taoyi, ZOU Zhengguang. Pressure on the Structure and Thermal Properties of PbTiO3: First-principle Study [J]. Journal of Inorganic Materials, 2022, 37(7): 787-794. |
[6] | XIAO Meixia, LI Miaomiao, SONG Erhong, SONG Haiyang, LI Zhao, BI Jiaying. Halogenated Ti3C2 MXene as High Capacity Electrode Material for Li-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(6): 660-668. |
[7] | YUAN Gang, MA Xinguo, HE Hua, DENG Shuiquan, DUAN Wangyang, CHENG Zhengwang, ZOU Wei. Plane Strain on Band Structures and Photoelectric Properties of 2D Monolayer MoSi2N4 [J]. Journal of Inorganic Materials, 2022, 37(5): 527-533. |
[8] | LI Chengjin, XUE Yi, ZHOU Xiaoxia, CHEN Hangrong. BiZnx/Si Photocathode: Preparation and CO2 Reduction Performance [J]. Journal of Inorganic Materials, 2022, 37(10): 1093-1101. |
[9] | PENG Junhui, TIKHONOV Evgenii. Vacancy on Structures, Mechanical and Electronic Properties of Ternary Hf-Ta-C System: a First-principles Study [J]. Journal of Inorganic Materials, 2022, 37(1): 51-57. |
[10] | YAN Yuxing, WANG Fan, ZHANG Juexuan, LI Fushao. First Principles Study of Electronic Structure and Optical Properties of ZnNb2O6 with Vacancy Defects [J]. Journal of Inorganic Materials, 2021, 36(3): 269-276. |
[11] | TIAN Jianjian, MA Xia, WANG Min, YAO Heliang, HUA Zile, ZHANG Lingxia. Sn Quantum Dots for Electrocatalytic Reduction of CO2 to HCOOH [J]. Journal of Inorganic Materials, 2021, 36(12): 1337-1342. |
[12] | ZHAO Linyan, LIU Yangsi, XI Xiaoli, MA Liwen, NIE Zuoren. First-principles Study on Nanoscale Tungsten Oxide: a Review [J]. Journal of Inorganic Materials, 2021, 36(11): 1125-1136. |
[13] | SUN Ding, DING Yanyan, KONG Lingwei, ZHANG Yuhong, GUO Xiujuan, WEI Liming, ZHANG Li, ZHANG Lixin. First-principles Study on Mg Doping in Cu2ZnSnS4 [J]. Journal of Inorganic Materials, 2020, 35(11): 1290-1294. |
[14] | LIN Qimin, CUI Jiangong, YAN Xin, YUAN Xueguang, CHEN Xiaoyu, LU Qichao, LUO Yanbin, HUANG Xue, ZHANG Xia, REN Xiaomin. First-principles Study on Electronic Structure and Optical Properties of Single Point Defect Graphene Oxide [J]. Journal of Inorganic Materials, 2020, 35(10): 1117-1122. |
[15] | WANG Chang-Ying, LU Yu-Chang, REN Cui-Lan, WANG Gang, HUAI Ping. Theoretical Studies on the Modulation of the Electronic Property of Ti2CO2 by Electric Field, Strain and Charge States [J]. Journal of Inorganic Materials, 2020, 35(1): 73-78. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||