Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (8): 971-977.DOI: 10.15541/jim20230039
Previous Articles Next Articles
NI Xiaoshi(), LIN Ziyang, QIN Muyan, YE Song(
), WANG Deping(
)
Received:
2023-01-20
Revised:
2023-02-27
Published:
2023-08-20
Online:
2023-03-17
Contact:
YE Song, associate professor. E-mail: yesong@tongji.edu.cn;About author:
NI Xiaoshi (1997-), female, Master candidate. E-mail: 2030638@tongji.edu.cn
Supported by:
CLC Number:
NI Xiaoshi, LIN Ziyang, QIN Muyan, YE Song, WANG Deping. Bioactivity and Mechanical Property of PMMA Bone Cement: Effect of Silanized Mesoporous Borosilicate Bioglass Microspheres[J]. Journal of Inorganic Materials, 2023, 38(8): 971-977.
Fig. 1 Microstructures and constituents of MBGS and MBGSSI (a) XRD patterns of MBGS and MBGSSI; (b, c) FT-IR spectra (b) and TG curves (c) of MBGS, MBGSSI and γ-MPS; (d, e) TEM images of MBGS (d) and MBGSSI (e)
Fig. 2 (a) N2 adsorption-desorption isotherms and (b) corresponding pore size distributions of MBGS, and (c) schematic diagram of the surface silanization
Sample | Specific surface area/(m2•g-1) | Average pore diameter/nm | Total pore volume/(mL•g-1) |
---|---|---|---|
MBGS | 84.047 | 33.9676 | 0.7137 |
MBGSSI | 227.856 | 10.22 | 0.5822 |
Table 1 Specific surface area, average pore diameter and total pore volume of MBGS and MBGSSI
Sample | Specific surface area/(m2•g-1) | Average pore diameter/nm | Total pore volume/(mL•g-1) |
---|---|---|---|
MBGS | 84.047 | 33.9676 | 0.7137 |
MBGSSI | 227.856 | 10.22 | 0.5822 |
Sample | C1s/% | O1s/% | Si2p/% | B1s/% | Ca2p/% |
---|---|---|---|---|---|
MBGS | 5.02 | 72.38 | 5.27 | 2.71 | 14.62 |
MBGSSI 0 nm | 7.91 | 70.26 | 5.68 | 2.27 | 13.88 |
MBGSSI 100 nm | 5.32 | 68.88 | 6.81 | 2.25 | 16.74 |
Table 2 Atomic concentrations of MBGS, MBGSSI and MBGSSI (etching depth at 100 nm)
Sample | C1s/% | O1s/% | Si2p/% | B1s/% | Ca2p/% |
---|---|---|---|---|---|
MBGS | 5.02 | 72.38 | 5.27 | 2.71 | 14.62 |
MBGSSI 0 nm | 7.91 | 70.26 | 5.68 | 2.27 | 13.88 |
MBGSSI 100 nm | 5.32 | 68.88 | 6.81 | 2.25 | 16.74 |
Sample | Dough time/s | Setting time/min | Peak temperature/℃ | Compressive strength/MPa | Compressive modulus/MPa | Flexural strength/MPa | Flexural modulus/MPa |
---|---|---|---|---|---|---|---|
PMMA | 287.5±7.8 | 11.38±0.37 | 49.15±1.45 | 70.01±1.85 | 878.67±55.84 | 67.75±1.88 | 2925.05±144.71 |
MBGS/PMMA | 136.0±2.8 | 14.77±0.07 | 40.65±0.25 | 71.22±2.20 | 1029.66±63.54 | 44.53±2.59 | 4003.19±125.79 |
MBGSSI/PMMA | 174.0±5.7 | 18.97±0.20 | 38.40±0.4 | 81.77±1.45 | 1091.50±75.64 | 59.42±4.34 | 3330.03±214.02 |
Table 3 Setting and mechanical properties of PMMA, MBGS/PMMA and MBGSSI/PMMA bone cements
Sample | Dough time/s | Setting time/min | Peak temperature/℃ | Compressive strength/MPa | Compressive modulus/MPa | Flexural strength/MPa | Flexural modulus/MPa |
---|---|---|---|---|---|---|---|
PMMA | 287.5±7.8 | 11.38±0.37 | 49.15±1.45 | 70.01±1.85 | 878.67±55.84 | 67.75±1.88 | 2925.05±144.71 |
MBGS/PMMA | 136.0±2.8 | 14.77±0.07 | 40.65±0.25 | 71.22±2.20 | 1029.66±63.54 | 44.53±2.59 | 4003.19±125.79 |
MBGSSI/PMMA | 174.0±5.7 | 18.97±0.20 | 38.40±0.4 | 81.77±1.45 | 1091.50±75.64 | 59.42±4.34 | 3330.03±214.02 |
[1] |
SHRIDHAR P, CHEN Y, KHALIL R, et al. A review of PMMA bone cement and intra-cardiac embolism. Materials, 2016, 9(10): 821.
DOI URL |
[2] | GLADIUS L. Alternative acrylic bone cement formulations for cemented arthroplasties: present status, key issues, and future prospects. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 2008, 84(2): 301. |
[3] |
ZHU J J, JIANG G Q, QIU Z Y, et al. Modification of poly(methyl methacrylate) bone cement for vertebroplasty. Journal of Biomaterials and Tissue Engineering, 2018, 8(5): 607.
DOI URL |
[4] |
CHEN L, ZHAI D, HUAN Z G, et al. Silicate bioceramic/PMMA composite bone cement with distinctive physicochemical and bioactive properties. RSC Advances, 2015, 5(47): 37314.
DOI URL |
[5] | SA Y, YANG F, WIJN J R D, et al. Physicochemical properties and mineralization assessment of porous polymethylmethacrylate cement loaded with hydroxyapatite in simulated body fluid. Materials Science & Engineering C, 2016, 61: 190. |
[6] |
FERREIRA B J M L, BARROCA N B, LOPES P P, et al. Properties of novel PMMA-co-EHA bone cements filled with hydroxyapatite. Polymer Composites, 2014, 35(4): 759.
DOI URL |
[7] |
SERGI R, BELLUCCI D, CANNILLO V. A comprehensive review of bioactive glass coatings: state of the art, challenges and future perspectives. Coatings, 2020, 10(8): 757.
DOI URL |
[8] |
BAINO F, FIUME E, MIOLA M, et al. Bioactive Sol-Gel glasses: processing, properties, and applications. International Journal of Applied Ceramic Technology, 2018, 15(4): 841.
DOI URL |
[9] |
LI Y, CHEN X, NING C, et al. Facile synthesis of mesoporous bioactive glasses with controlled shapes. Materials Letters, 2015, 161: 605.
DOI URL |
[10] |
ZHONG J P, GREENSPAN D C. Processing and properties of Sol-Gel bioactive glasses. Journal of Biomedical Materials Research, 2000, 53(6): 694.
DOI URL |
[11] | CUI X, HUANG C C, ZHANG M, et al. Enhanced osteointegration of poly(methylmethacrylate) bone cements by incorporating strontium-containing borate bioactive glass. Journal of the Royal Society Interface, 2017, 14(131): 20161057. |
[12] |
BOLAINA-LORENZO E D, CERVANTES-UC J M, CAUICH- RODRIGUEZ J V, et al. Effect of barium sulfate surface treatments on the mechanical properties of acrylic bone cements. Polymer Bulletin, 2020, 78(3): 1.
DOI |
[13] | DEBNATH S, RANADE R, WUNDER S L, et al. Interface effects on mechanical properties of particle-reinforced composites. Dental Materials: Official Publication of the Academy of Dental Materials, 2004, 20(7): 677. |
[14] |
LUNG C Y K, MATINLINNA J P. Aspects of silane coupling agents and surface conditioning in dentistry: an overview. Dental Materials, 2012, 28(5): 467.
DOI URL |
[15] |
CHANG Y C, LIN Z Y, XIE X, et al. An injectable composite bone cement based on mesoporous borosilicate bioactive glass spheres Journal of Inorganic Materials, 2020, 35(12): 1398.
DOI URL |
[16] |
MATINLINNA J P, LUNG C Y K, TSOI J K H. Silane adhesion mechanism in dental applications and surface treatments: a review. Dental Materials, 2018, 34(1): 13.
DOI URL |
[17] |
ALONSO L M, GARCIA-MENOCAL J A, AYMERICH M T, et al. Calcium phosphate glasses: silanation process and effect on the bioactivity behavior of glass-PMMA composites. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 2014, 102(2): 205.
DOI URL |
[18] | SALON M C B, BAYLE P A, ABDELMOULEH M, et al. Kinetics of hydrolysis and self condensation reactions of silanes by NMR spectroscopy. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2008, 312(2): 83. |
[19] | ISO member body. International Standard. Implants for Surgery-Acrylic Resin Cements. ISO5833: 2002. Switzerland: ISO organization-(IX-ISO), 2002. |
[20] |
LIU X, RAHAMAN M N, DAY D E. Conversion of melt-derived microfibrous borate (13-93B3) and silicate (45S5) bioactive glass in a simulated body fluid. Journal of Materials Science. Materials in Medicine, 2013, 24(3): 583.
DOI URL |
[21] |
ALI A A, RAMMAH Y S, EL-MALLAWANY R, et al. FTIR and UV spectra of pentaternary borate glasses. Measurement, 2017, 105: 72.
DOI URL |
[22] |
ZAGRAJCZUK B, DZIADEK M, OLEJNICZAK Z, et al. Structural and chemical investigation of the gel-derived bioactive materials from the SiO2-CaO and SiO2-CaO-P2O5 systems. Ceramics International, 2017, 43(15): 12742.
DOI URL |
[23] |
DOU B J, HU Q, LI J J, et al. Adsorption performance of VOCs in ordered mesoporous silicas with different pore structures and surface chemistry. Journal of Hazardous Materials, 2011, 186(2/3): 1615.
DOI URL |
[24] |
CHEN Z D, MA Y X, GOU L A, et al. Construction of caffeic acid modified porous starch as the dual-functional microcapsule for encapsulation and antioxidant property. International Journal of Biological Macromolecules, 2022, 228: 358.
DOI URL |
[25] |
CHRISTIAN H, V B D, BRIAN Y, et al. Polymer nanocomposites having a high filler content: synthesis, structures, properties, and applications. Nanoscale, 2019, 11(11): 4653.
DOI URL |
[26] |
ALDABIB J M, ISHAK Z A M. Effect of hydroxyapatite filler concentration on mechanical properties of poly (methyl methacrylate) denture base. SN Applied Sciences, 2020, 2: 732.
DOI |
[27] | KINLOCH A J. Adhesion and adhesives: science and technology: London: Chapman and Hall, 1987: 171-187. |
[1] | FAN Wugang, CAO Xiong, ZHOU Xiang, LI Ling, ZHAO Guannan, ZHANG Zhaoquan. Anticorrosion Performance of 8YSZ Ceramics in Simulated Aqueous Environment of Pressurized Water Reactor [J]. Journal of Inorganic Materials, 2024, 39(7): 803-809. |
[2] | WU Yuhao, PENG Renci, CHENG Chunyu, YANG Li, ZHOU Yichun. First-principles Study on Mechanical Properties and Melting Curve of HfxTa1-xC System [J]. Journal of Inorganic Materials, 2024, 39(7): 761-768. |
[3] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[4] | SUN Haiyang, JI Wei, WANG Weimin, FU Zhengyi. Design, Fabrication and Properties of Periodic Ordered Structural Composites with TiB-Ti Units [J]. Journal of Inorganic Materials, 2024, 39(6): 662-670. |
[5] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[6] | LIU Guoang, WANG Hailong, FANG Cheng, HUANG Feilong, YANG Huan. Effect of B4C Content on Mechanical Properties and Oxidation Resistance of (Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 697-706. |
[7] | SU Yi, SHI Yangfan, JIA Chenglan, CHI Pengtao, GAO Yang, MA Qingsong, CHEN Sian. Microstructure and Properties of C/HfC-SiC Composites Prepared by Slurry Impregnation Assisted Precursor Infiltration Pyrolysis [J]. Journal of Inorganic Materials, 2024, 39(6): 726-732. |
[8] | ZHANG Rui, ZHANG Kan, YUAN Mengya, GU Xinlei, ZHENG Weitao. Nitrogen Vacancy Regulated Lattice Distortion on Improvement of (NbMoTaW)Nx Thin Films: Mechanical Properties and Wear Resistance [J]. Journal of Inorganic Materials, 2024, 39(6): 715-725. |
[9] | ZHANG Yuchen, LU Zhiyao, HE Xiaodong, SONG Guangping, ZHU Chuncheng, ZHENG Yongting, BAI Yuelei. Predictions of Phase Stability and Properties of S-group Elements Containing MAX Borides [J]. Journal of Inorganic Materials, 2024, 39(2): 225-232. |
[10] | LI Lei, CHENG Qunfeng. Recent Advances in the High Performance MXenes Nanocomposites [J]. Journal of Inorganic Materials, 2024, 39(2): 153-161. |
[11] | LIU Yanyan, XIE Xi, LIU Zengqian, ZHANG Zhefeng. Metal Matrix Composites Reinforced by MAX Phase Ceramics: Fabrication, Properties and Bioinspired Designs [J]. Journal of Inorganic Materials, 2024, 39(2): 145-152. |
[12] | WANG Bo, CAI Delong, ZHU Qishuai, LI Daxin, YANG Zhihua, DUAN Xiaoming, LI Yanan, WANG Xuan, JIA Dechang, ZHOU Yu. Mechanical Properties and Thermal Shock Resistance of SrAl2Si2O8 Reinforced BN Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(10): 1182-1188. |
[13] | YANG Pingjun, LI Tiehu, LI Hao, DANG Alei. Effect of Graphene on Graphitization, Electrical and Mechanical Properties of Epoxy Resin Carbon Foam [J]. Journal of Inorganic Materials, 2024, 39(1): 107-112. |
[14] | FU Shi, YANG Zengchao, LI Jiangtao. Progress of High Strength and High Thermal Conductivity Si3N4 Ceramics for Power Module Packaging [J]. Journal of Inorganic Materials, 2023, 38(10): 1117-1132. |
[15] | WU Dongjiang, ZHAO Ziyuan, YU Xuexin, MA Guangyi, YOU Zhulin, REN Guanhui, NIU Fangyong. Direct Additive Manufacturing of Al2O3-TiCp Composite Ceramics by Laser Directed Energy Deposition [J]. Journal of Inorganic Materials, 2023, 38(10): 1183-1192. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||