Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (8): 978-986.DOI: 10.15541/jim20230067
Previous Articles Next Articles
QIN Juan1(), LIANG Dandan2, SUN Jun1,3(
), YANG Jinfeng4, HAO Yongxin1, LI Qinglian5, ZHANG Ling3,5, XU Jingjun1,3
Received:
2023-02-09
Revised:
2023-02-20
Published:
2023-08-20
Online:
2023-03-24
Contact:
SUN Jun, professor. E-mail: sunjun@nankai.edu.cnAbout author:
QIN Juan (1990-), female, PhD candidate. E-mail: qinjuan@mail.nankai.edu.cn
Supported by:
CLC Number:
QIN Juan, LIANG Dandan, SUN Jun, YANG Jinfeng, HAO Yongxin, LI Qinglian, ZHANG Ling, XU Jingjun. Flat Shoulder Congruent Lithium Niobate Crystals Grown by the Czochralski Method[J]. Journal of Inorganic Materials, 2023, 38(8): 978-986.
Fig. 2 Photos of series flat shoulder CLN crystals grown by different methods (a) Non-optimized thermal field and growth process, as CLN-N1; (b) Optimized thermal field, as CLN-N2; (c-g) optimized thermal field and growth process, as CLN-Y1, CLN-Y2, CLN-Y3, Fe:CLN-Y4 and Er:CLN-Y5, respectively
Crystal | CLN-N1 | CLN-N2 | CLN-Y1 | CLN-Y2 | CLN-Y3 | Fe:CLN-Y4 | Er:CLN-Y5 |
---|---|---|---|---|---|---|---|
Distance between after-heater and crucible/mm | 20 | 20 | 10 | 10 | 10 | 10 | 10 |
Time of shouldering/min | - | 200 | 720 | 540 | 320 | 310 | 370 |
Rotation rate/(r·min-1) | 6 | 6 | 7 | 7 | 7 | 7 | 7 |
Range of reducing pulling rate/(mm·h-1) | 1.5-0 | 1.5-0 | 1.5-0 | 1.5-0 | 1.5-0 | 1.5-0 | 1.5-0 |
Decrement of pulling rate each step/(mm·h-1) | 0.5 | 0.3 | 0.3 | 0.2 | 0.2 | 0.2 | 0.2 |
Interval of reducing pulling rate/min | 20 | 20 | 15 | 10 | 10 | 10 | 10 |
Range of lifting pulling rate/(mm·h-1) | 0-1.5 | 0-1.5 | 0-1.5 | 0-1.5 | 0-1.5 | 0-1.5 | 0-1.5 |
Increment of pulling rate each step/(mm·h-1) | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Interval of lifting pulling rate/min | 20 | 20 | 13 | 15 | 13 | 15 | 10 |
Table 1 Growth parameters of flat shoulder CLN
Crystal | CLN-N1 | CLN-N2 | CLN-Y1 | CLN-Y2 | CLN-Y3 | Fe:CLN-Y4 | Er:CLN-Y5 |
---|---|---|---|---|---|---|---|
Distance between after-heater and crucible/mm | 20 | 20 | 10 | 10 | 10 | 10 | 10 |
Time of shouldering/min | - | 200 | 720 | 540 | 320 | 310 | 370 |
Rotation rate/(r·min-1) | 6 | 6 | 7 | 7 | 7 | 7 | 7 |
Range of reducing pulling rate/(mm·h-1) | 1.5-0 | 1.5-0 | 1.5-0 | 1.5-0 | 1.5-0 | 1.5-0 | 1.5-0 |
Decrement of pulling rate each step/(mm·h-1) | 0.5 | 0.3 | 0.3 | 0.2 | 0.2 | 0.2 | 0.2 |
Interval of reducing pulling rate/min | 20 | 20 | 15 | 10 | 10 | 10 | 10 |
Range of lifting pulling rate/(mm·h-1) | 0-1.5 | 0-1.5 | 0-1.5 | 0-1.5 | 0-1.5 | 0-1.5 | 0-1.5 |
Increment of pulling rate each step/(mm·h-1) | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Interval of lifting pulling rate/min | 20 | 20 | 13 | 15 | 13 | 15 | 10 |
[1] | MIN N B. The Physical Basis of Crystal Growth. Nanjing: Nanjing University Press, 2019: 7- 11. |
[2] | YANG L, ZUO R, SU W J, et al. Study on numerical simulation of thermal stress at different stages in Kyropoulos sapphire crystal growth. Materials Reports, 2012, 26(11): 134. |
[3] |
MÜLLER G. Experimental analysis and modeling of melt growth processes. Journal of Crystal Growth, 2002, 237-239(3): 1628.
DOI URL |
[4] | ZHANG H, JIANG T Y, CHEN X J. Blossom of boule shoulder in growing Nd:YAG crystals. Journal of Synthetic Crystals, 1991, Z1: 265. |
[5] | ZHOU Y D, ZANG J C, LIU G Q. Growth technique of Pb2MoO5 single crystal and analysing the causes of crystal cracks. Journal of Beijing University of Technology, 1983, 9(1): 35. |
[6] | JIN J R, XU R Y, ZHU Q B, et al. Growth of high quality lithium niobate crystal. Journal of Synthetic Crystals, 1981, 1: 11. |
[7] | YAN T. Growth, Structure and Properties of High Quality LiNbO3 and LiTaO3 Crystals. Jinan: Doctoral Dissertation of Shandong University, 2008. |
[8] |
STELIAN C, SEN G, DUFFAR T. Comparison of thermal stress computations in Czochralski and Kyropoulos growth of sapphire crystals. Journal of Crystal Growth, 2018, 499: 77.
DOI URL |
[9] |
CHEN C H, CHEN J C, CHIUE Y S, et al. Thermal and stress distributions in larger sapphire crystals during the cooling process in a Kyropoulos furnace. Journal of Crystal Growth, 2014, 385: 55.
DOI URL |
[10] | YAO T, ZUO H B, HAN J C, et al. The simulation of the stress distribution in sapphire crystal growth progress. Journal Harbin University Science & Technology, 2006, 11(5): 100. |
[11] | LIU J H, QIAO M Y. Theoretical analysis of the cracking of crystal grown by Czochralski method. Journal of Crystal Growth, 1984, 4: 281. |
[12] | CHEN Y. Application of flat crystal formation in Germanium mono-crystal growing. Yunnan Metallurgy, 2002, 31(6): 36. |
[13] |
BUDENKOVA O, VASILIEV M, YUFEREV V, et al. Effect of internal radiation on the solid-liquid interface shape in low and high thermal gradient Czochralski oxide growth. Journal of Crystal Growth, 2007, 303(1): 156.
DOI URL |
[14] |
BERMÚDEZ V, BUDENKOVA O N, YUFEREV V S, et al. Effect of the shouldering angle on the shape of the solid-liquid interface and temperature fields in sillenite-type crystals growth. Journal of Crystal Growth, 2005, 279(1/2): 82.
DOI URL |
[15] | GROUP of 104. Growth of <104> orientated lithium niobate crystals. Journal of Inorganic Materials, 1977, 02: 9. |
[16] |
GALAZKA Z. Radial temperature distribution in LiNbO3 crystals pulled by the Czochralski technique. Journal of Crystal Growth, 1997, 178(3): 345.
DOI URL |
[17] | XU Y Q, LI X C, SUN N F, et al. The study of ϕ100 mm sulfur doped InP single crystal growth. Semiconductor Technology, 2004, 29 (3): 31. |
[18] | LI Y R, HUANG Q F, LI X L, et al. Study on the progress of seeding and shoulder controlling on HP-LEC InP single crystal growth. Semiconductor Technology, 2013, 38(11): 840. |
[19] |
ROJO J C, DIÉGUEZ E, DERBY J J. A heat shield to control thermal gradients, melt convection, and interface shape during shouldering in Czochralski oxide growth. Journal of Crystal Growth, 1999, 200(1/2): 329.
DOI URL |
[20] | SONG W. Numerical Simulation Analysis of Czochralski Growth Processes for Langasite Crystal. Jinan: Master Dissertation of Shandong University, 2009. |
[21] | ZHANG Z J. Growth of flat shoulder germanium single crystal using large size ratio of crystal to crucible. Journal of Yunnan University, 2002, 24(1A): 78. |
[22] |
QIN J, SUN J, HAO Y X, et al. Effect of exposed crucible wall on the Czochralski growth of an LN crystal. CrystEngComm, 2023, 25: 450.
DOI URL |
[23] | SHANG J F, SUN J, ZHANG Y J, et al. A method to measure electro-optic coefficients of crystals by combining conoscopic interference and near optical axis electro-optic modulation. Journal of Synthetic Crystals, 2015, 44(11): 2925. |
[24] | WU B C. Improvement of optical homogeneity of LN crystal by heat treating. Chinese Journal of Lasers, 1978, 5(1): 40. |
[25] |
TAKAGI K, FUKAZAWA T, ISHII M. Inversion of the direction of the solid-liquid interface on the Czochralski growth of GGG crystals. Journal of Crystal Growth, 1976, 32(1): 89.
DOI URL |
[26] | WANG S. Hot Zone Design and Thermal Stress Analysis during Growth of Bulk Crystals. Hubei: Doctoral dissertation of Huazhong University of Science and Technology, 2016. |
[27] | STOCKMEIER L, LEHMANN L, MILLER A, et al. Dislocation formation in heavily as-doped Czochralski grown silicon. Crystal Research & Technology, 2017, 52(8): 1600373. |
[28] |
BRICE J C. The cracking of Czochralski-grown crystals. Journal of Crystal Growth, 1977, 42: 427.
DOI URL |
[29] | LIU J H, QIAO M Y, LI J L. Growth of LN crystal. Journal of Changchun University of Science and Technology, 1987, 3: 73. |
[30] | WANG S, FANG H. Dependence of thermal stress evolution on power allocation during Kyropoulos sapphire cooling process. Applied T1ermal Engineering, 2016, 95: 150. |
[31] |
MIL'VIDSKII M G, BOCHKAREV E P. Creation of defects during the growth of semiconductor single crystals and films. Journal of Crystal Growth, 1978, 44(1): 61.
DOI URL |
[32] |
TSUKADA T, KAKINOKI K, HOZAWA M, et al. Numerical and experimental studies on crack formation in LiNbO3 single crystal. Journal of Crystal Growth, 1997, 180(3/4): 543.
DOI URL |
[33] | ZHANG X Y, GUAN X J, PAN Z B, et al. Simulation on effect of heat shield position on the V/G and point defect and thermal stress of Czochralski silicon. Journal of Synthetic Crystals, 2014, 43(4): 771. |
[34] | GUAN X J, ZHANG X Y, PAN Z B, et al. Simulation on effect of heat shield position on the melt and solid liquid interface Cz silicon. Journal of Synthetic Crystals, 2015, 44(2): 329. |
[35] | CHEN Q H. On the crystal diameter change during the shouldering process in the Czochralski. Journal of Synthetic Crystals, 1984, 4: 345. |
[36] | LIANG D D. Study on the Flat Shoulder Growth of Lithium Niobate Crystal. Tianjin: Master Dissertation of Nankai University, 2017. |
[37] | YU G J, ZONG Y M, ZHANG Z H, et al. Bubbles distribution in sapphire crystal grown by Kyropoulos method. Journal of Synthetic Crystals, 2014, 43(6): 1332. |
[38] |
LI S H, PAN X H, LIU Y, et al. Interactions between bubble and interface during KTa1-xNbxO3 crystal growth. Journal of Inorganic Materials, 2017, 32(11): 1223.
DOI URL |
[39] | MUKAIYAMA Y, SUEOKA K, MAEDA S, et al. Numerical analysis of effect of thermal stress depending on pulling rate on behavior of intrinsic point defects in large-diameter Si crystal grown by Czochralski method. Journal of Crystal Growth, 2020, 531: 125334. |
[1] | CAI Hao, WANG Qihang, ZOU Zhaoyong. Crystallization Pathway of Monohydrocalcite via Amorphous Calcium Carbonate Regulated by Magnesium Ion [J]. Journal of Inorganic Materials, 2024, 39(11): 1275-1282. |
[2] | HAO Yongxin, QIN Juan, SUN Jun, YANG Jinfeng, LI Qinglian, HUANG Guijun, XU Jingjun. Impact of Crucible Bottom Shape on the Growth of Congruent Lithium Niobate Crystals by Czochralski Method [J]. Journal of Inorganic Materials, 2024, 39(10): 1167-1174. |
[3] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. |
[4] | SHI Xiaotu, ZHANG Qingli, SUN Guihua, LUO Jianqiao, DOU Renqin, WANG Xiaofei, GAO Jinyun, ZHNAG Deming, LIU Jiandang, YE Bangjiao. Positron Annihilation Study of Yb:YAG Single Crystal Defects under Czochralski Method [J]. Journal of Inorganic Materials, 2023, 38(3): 316-321. |
[5] | YANG Jiaxue, LI Wen, WANG Yan, ZHU Zhaojie, YOU Zhenyu, LI Jianfu, TU Chaoyang. Spectroscopic and Yellow Laser Features of Dy3+: Y3Al5O12 Single Crystals [J]. Journal of Inorganic Materials, 2023, 38(3): 350-356. |
[6] | WU Zhen, LI Huifang, ZHANG Zhonghan, ZHANG Zhen, LI Yang, LAN Jianghe, SU Liangbi, WU Anhua. Growth and Characterization of CeF3 Crystals for Magneto-optical Application [J]. Journal of Inorganic Materials, 2023, 38(3): 296-302. |
[7] | QI Xuejun, ZHANG Jian, CHEN Lei, WANG Shaohan, LI Xiang, DU Yong, CHEN Junfeng. Macroscopic Defects of Large Bi12GeO20 Crystals Grown Using Vertical Bridgman Method [J]. Journal of Inorganic Materials, 2023, 38(3): 280-287. |
[8] | QI Zhanguo, LIU Lei, WANG Shouzhi, WANG Guogong, YU Jiaoxian, WANG Zhongxin, DUAN Xiulan, XU Xiangang, ZHANG Lei. Progress in GaN Single Crystals: HVPE Growth and Doping [J]. Journal of Inorganic Materials, 2023, 38(3): 243-255. |
[9] | ZHANG Chaoyi, TANG Huili, LI Xianke, WANG Qingguo, LUO Ping, WU Feng, ZHANG Chenbo, XUE Yanyan, XU Jun, HAN Jianfeng, LU Zhanwen. Research Progress of ScAlMgO4 Crystal: a Novel GaN and ZnO Substrate [J]. Journal of Inorganic Materials, 2023, 38(3): 228-242. |
[10] | CHEN Kunfeng, HU Qianyu, LIU Feng, XUE Dongfeng. Multi-scale Crystallization Materials: Advances in in-situ Characterization Techniques and Computational Simulations [J]. Journal of Inorganic Materials, 2023, 38(3): 256-269. |
[11] | WANG Haidong, WANG Yan, ZHU Zhaojie, LI Jianfu, LAKSHMINARAYANA Gandham, TU Chaoyang. Crystal Growth and Structural, Optical, and Visible Fluorescence Traits of Dy3+-doped SrGdGa3O7 Crystal [J]. Journal of Inorganic Materials, 2023, 38(12): 1475-1482. |
[12] | MING Yue, HU Yue, MEI Anyi, RONG Yaoguang, HAN Hongwei. Application of Lead Acetate Additive for Printable Perovskite Solar Cell [J]. Journal of Inorganic Materials, 2022, 37(2): 197-203. |
[13] | XU Jiayue, LI Zhichao, PAN Yunfang, ZHOU Ding, WEN Feng, MA Wenjun. Research Progress of Hyperstoichiometric UO2 Crystals [J]. Journal of Inorganic Materials, 2020, 35(11): 1183-1192. |
[14] | Rong-Hui LI, Yi-Zheng JIA, Nan-Nan HU. 3D Hierarchical Flower Like Alumina Nanomaterials: Preparation and Arsenic Removal Performance [J]. Journal of Inorganic Materials, 2019, 34(5): 553-559. |
[15] | WANG Dong-Hai, XUE Yan-Yan, LI Na, ZHOU Shi-Ming, XU Xiao-Dong, LI Dong-Zhen, XU Jun, WANG Qing-Guo. Micro-tube Sapphire Crystal Grown by the Edge-defined-film Fed Method [J]. Journal of Inorganic Materials, 2019, 34(12): 1290-1294. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||