Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (9): 969-975.DOI: 10.15541/jim20210771
• RESEARCH ARTICLE • Previous Articles Next Articles
LI Wenjun(), WANG Hao(
), TU Bingtian, CHEN Qiangguo, ZHENG Kaiping, WANG Weiming, FU Zhengyi
Received:
2021-12-17
Revised:
2022-02-22
Published:
2022-09-20
Online:
2022-06-16
Contact:
WANG Hao, professor. E-mail: shswangh@whut.edu.cnAbout author:
LI Wenjun (1996-), male, Master candidate. E-mail: 15826911464@163.com
Supported by:
CLC Number:
LI Wenjun, WANG Hao, TU Bingtian, CHEN Qiangguo, ZHENG Kaiping, WANG Weiming, FU Zhengyi. Preparation and Property of Mg0.9Al2.08O3.97N0.03 Transparent Ceramic with Broad Optical Transmission Range[J]. Journal of Inorganic Materials, 2022, 37(9): 969-975.
Fig. 1 Characterization of Mg0.9Al2.08O3.97N0.03 powder, slurry, green body, and transparent ceramic (a) XRD patterns of powder and ceramic; (b) Relationship between viscosity of slurry and contents of TAC; (c) Morphology of green body; (d) SEM image of etched surface of transparent ceramic
Fig. 2 Comparison of optical property of transparent ceramics (a) In-line transmittance of Mg0.9Al2.08O3.97N0.03, MgAl2O4, c-plane sapphire[1], Mg0.27Al2.58O3.73N0.27 transparent ceramics[14]; (b) Refractive index of Mg0.9Al2.08O3.97N0.03, MgAl2O4 transparent ceramics[19]
Fig. 4 Fractured strength under different load rates (a) and strength-probability-time diagram (b) of Mg0.9Al2.08O3.97N0.03 and MgAl2O4[27] transparent ceramics Colorful figures are available on website
Sample | Vickers hardness/GPa | Fracture toughness/(MPa·m1/2) | Young’s modulus/GPa | Thermal expansion coefficient/(×10-6, K-1) |
---|---|---|---|---|
MgAl2O4[ | 12.9±0.49 | 1.6±0.1 | 273 | 6.97 |
Mg0.9Al2.08O3.97N0.03 | 13.7±0.12 | 2.12±0.1 | 280 | 6.57 |
Table 1 Property of Mg0.9Al2.08O3.97N0.03 and MgAl2O4 transparent ceramic
Sample | Vickers hardness/GPa | Fracture toughness/(MPa·m1/2) | Young’s modulus/GPa | Thermal expansion coefficient/(×10-6, K-1) |
---|---|---|---|---|
MgAl2O4[ | 12.9±0.49 | 1.6±0.1 | 273 | 6.97 |
Mg0.9Al2.08O3.97N0.03 | 13.7±0.12 | 2.12±0.1 | 280 | 6.57 |
[1] |
RUBAT D M, KLEEBE H J, MÜLLER M M, et al. Fifty years of research and development coming to fruition; unraveling the complex interactions during processing of transparent magnesium aluminate (MgAl2O4) spinel. Journal of the American Ceramic Society, 2013, 96(11): 3341-3365.
DOI URL |
[2] |
WAETZIG K, KRELL A, TRICE R. The effect of composition on the optical properties and hardness of transparent Al-rich MgO·nAl2O3 spinel ceramics. Journal of the American Ceramic Society, 2015, 99(3): 946-953.
DOI URL |
[3] |
SANGHERA J, BAYYA S, VILLALOBOS G, et al. Transparent ceramics for high-energy laser systems. Optical Materials, 2011, 33(3): 511-518.
DOI URL |
[4] |
PAPPAS J M, DONG X Y. Porosity characterization of additively manufactured transparent MgAl2O4 spinel by laser direct deposition. Ceramics International, 2020, 46(5): 6745-6755.
DOI URL |
[5] |
SALEM J A, SGLAVO V. Transparent armor ceramics as spacecraft windows. Journal of the American Ceramic Society, 2013, 96(1): 281-289.
DOI URL |
[6] |
ROTHMAN A, KALABUKHOV S, SVERDLOV N, et al. The effect of grain size on the mechanical and optical properties of spark plasma sintering-processed magnesium aluminate spinel MgAl2O4. International Journal of Applied Ceramic Technology, 2014, 11(1): 146-153.
DOI URL |
[7] |
SOKOL M, KALABUKHOV S, SHNECK R, et al. Effect of grain size on the static and dynamic mechanical properties of magnesium aluminate spinel (MgAl2O4). Journal of the European Ceramic Society, 2017, 37(10): 3417-3424.
DOI URL |
[8] |
NECINA V, PABST W. Grain growth of MgAl2O4 ceramics with LiF and NaF addition. Open Ceramics, 2021, 5(2): 100078.
DOI URL |
[9] |
ZHANG H, WANG H, GU H, et al. Preparation of transparent MgO·1.8Al2O3 spinel ceramics by aqueous gelcasting, presintering and hot isostatic pressing. Journal of the European Ceramic Society, 2018, 38(11): 4057-4063.
DOI URL |
[10] | YAN J, YAN W, CHEN Z, et al. A strategy for controlling microstructure and mechanical properties of microporous spinel (MgAl2O4) aggregates from magnesite and Al(OH)3. Journal of Alloys and Compounds, 2022, 896: 163088. |
[11] | ZHANG P, LIU P, SUN Y, et al. Microstructure and properties of transparent MgAl2O4 ceramic fabricated by aqueous gelcasting. Journal of Alloys and Compounds, 2016, 657: 246-249. |
[12] |
WILLEMS H X, WITH G D, METSELAAR R. Thermodynamics of AlON III: stabilization of AlON with MgO. Journal of the European Ceramic Society, 1993, 12(1): 43-49.
DOI URL |
[13] |
ZONG X, WANG H, GU H, et al. A novel spinel-type Mg0.55Al2.36O3.81N0.19 transparent ceramic with infrared transmittance range comparable to c-plane sapphire. Scripta Materialia, 2020, 178(15): 428-432.
DOI URL |
[14] |
LIU X, WANG H, TU B T, et al. Highly transparent Mg0.27Al2.58O3.73N0.27ceramic prepared by pressureless sintering. Journal of the American Ceramic Society, 2014, 97(1): 63-66.
DOI URL |
[15] |
ZHANG Z, WANG H, TU B T, et al. Characterization and evaluation on mechanical property of Mg0.27Al2.58O3.73N0.27transparent ceramic. Journal of Inorganic Materials, 2018, 33(9): 1006-1010.
DOI |
[16] |
ZONG X, WANG H, GU H, et al. Highly transparent Mg0.27Al2.58O3.73N0.27ceramic fabricated by aqueous gelcasting, pressureless sintering, and post-HIP. Journal of the American Ceramic Society, 2019, 102(11): 6507-6516.
DOI URL |
[17] | GB/T 6569-2006, 精细陶瓷弯曲强度试验方法. |
[18] |
GRANON A, GOEURIOT P, THEVENOT F, et al. Reactivity in the Al2O3-AlN-MgO system. The MgAlON spinel phase. Journal of the European Ceramic Society, 1994, 13(4): 365-370.
DOI URL |
[19] |
KRELL A, HUTZLER T, KLIMKE J. Transmission physics and consequences for materials selection, manufacturing, and applications. Journal of the European Ceramic Society, 2009, 29(2): 207-221.
DOI URL |
[20] |
WEMPLE S H, DIDOMENICO M J. Behavior of the electronic dielectric constant in covalent and ionic materials. Physical Review B, 1971, 3(4): 1338-1351.
DOI URL |
[21] |
CAI B, KAINO T, SUGIHARA O. Sulfonyl-containing polymer and its alumina nanocomposite with high Abbe number and high refractive index. Optical Materials Express, 2015, 5(5): 1210-1216.
DOI URL |
[22] | KLEIN C A. Flexural strength of infrared-transmitting window materials: bimodal Weibull statistical analysis. Optical Engineering, 2011, 50(2): 1-10. |
[23] |
DENG B, JIANG D, GONG J. Is a three-parameter Weibull function really necessary for the characterization of the statistical variation of the strength of brittle ceramics? Journal of the European Ceramic Society, 2018, 38(4): 2234-2242.
DOI URL |
[24] | KHALILI A. Statistical properties of Weibull estimators. Journal of Materials Science, 1991, 26: 6741-6752. |
[25] |
TOKARIEV O, SCHNETTER L, BECK T, et al. Grain size effect on the mechanical properties of transparent spinel ceramics. Journal of the European Ceramic Society, 2013, 33(4): 749-757.
DOI URL |
[26] |
MALZBENDER J, STEINBRECH R W. Threshold fracture stress of thin ceramic components. Journal of the European Ceramic Society, 2008, 28(1): 247-252.
DOI URL |
[27] | TOKARIEV O, STEINBRECH R W, SCHNETTER L, et al. Micro- and macro-mechanical testing of transparent MgAl2O4 spinel. Journal of Materials Science, 2012, 47: 4821-4826. |
[28] | CHOI S R. Slow crack growth analysis of brittle materials with finite thickness subjected to constant stress-rate flexural loading. Journal of Materials Science, 1999, 34: 3875-3882. |
[29] |
RAMOS N D, CAMPOS T M, PAZ I S, et al. Microstructure characterization and SCG of newly engineered dental ceramics. Dental Materials, 2016, 32(7): 870-878.
DOI URL |
[30] | EKATERINA N, KEYUR K, KIRA C, et al. Hall-Petch effect in binary and ternary alumina/zirconia/spinel composites. Journal of Materials Research and Technology, 2021, 11: 823-832. |
[31] | SENTHIL K, BISWAS P, JOHNSON R, et al. Transparent ceramics for ballistic armor applications. Handbook of Advanced Ceramics and Composites, 2020, 11: 435-457. |
[32] |
KRELL A, STRASSBURGER E, HUTZLER T, et al. Single and polycrystalline transparent ceramic armor with different crystal structure. Journal of the American Ceramic Society, 2013, 96(9): 2718-2721.
DOI URL |
[33] |
IQBAL M J, ISMAIL B, RENTENBERGER C, et al. Modification of the physical properties of semiconducting MgAl2O4 by doping with a binary mixture of Co and Zn ions. Materials Research Bulletin, 2011, 46(12): 2271-2277.
DOI URL |
[34] |
REN L, WANG H, TU B T, et al. Investigation on composition- dependent properties of Mg5xAl23-5xO27+5xN5-5x (0≤x≤1): Part II. Mechanical properties via first-principles calculations combined with bond valence models. Journal of the European Ceramic Society, 2021, 41(3): 4942-4950.
DOI URL |
[1] | SUN Yuxuan, WANG Zheng, SHI Xue, SHI Ying, DU Wentong, MAN Zhenyong, ZHENG Liaoying, LI Guorong. Defect Dipole Thermal-stability to the Electro-mechanical Properties of Fe Doped PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(5): 545-551. |
[2] | CHEN Yi, QIU Haipeng, CHEN Mingwei, XU Hao, CUI Heng. SiC/SiC Composite: Matrix Boron Modification and Mechanical Properties [J]. Journal of Inorganic Materials, 2025, 40(5): 504-510. |
[3] | CUI Ning, ZHANG Yuxin, WANG Lujie, LI Tongyang, YU Yuan, TANG Huaguo, QIAO Zhuhui. Single-phase Formation Process and Carbon Vacancy Regulation of (TiVNbMoW)Cx High-entropy Ceramics [J]. Journal of Inorganic Materials, 2025, 40(5): 511-520. |
[4] | LI Ziwei, GONG Weilu, CUI Haifeng, YE Li, HAN Weijian, ZHAO Tong. (Zr, Hf, Nb, Ta, W)C-SiC Composite Ceramics: Preparation via Precursor Route and Properties [J]. Journal of Inorganic Materials, 2025, 40(3): 271-280. |
[5] | GAO Chenguang, SUN Xiaoliang, CHEN Jun, LI Daxin, CHEN Qingqing, JIA Dechang, ZHOU Yu. SiBCN-rGO Ceramic Fibers Based on Wet Spinning Technology: Microstructure, Mechanical and Microwave-absorbing Properties [J]. Journal of Inorganic Materials, 2025, 40(3): 290-296. |
[6] | MU Haojie, ZHANG Yuanjiang, YU Bin, FU Xiumei, ZHOU Shibin, LI Xiaodong. Preparation and Properties of ZrO2 Doped Y2O3-MgO Nanocomposite Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 281-289. |
[7] | YE Junhao, ZHOU Zhenzhen, HU Chen, WANG Yanbin, JING Yanqiu, LI Tingsong, CHENG Ziqiu, WU Junlin, IVANOV Maxim, HRENIAK Dariusz, LI Jiang. Yb:Sc2O3 Transparent Ceramics Fabricated from Co-precipitated Nano-powders: Microstructure and Optical Property [J]. Journal of Inorganic Materials, 2025, 40(2): 215-224. |
[8] | WANG Yueyue, HUANG Jiahui, KONG Hongxing, LI Huaizhu, YAO Xiaohong. Silver Loaded Radial Mesoporous Silica: Preparation and Application in Dental Resins [J]. Journal of Inorganic Materials, 2025, 40(1): 77-83. |
[9] | FAN Wugang, CAO Xiong, ZHOU Xiang, LI Ling, ZHAO Guannan, ZHANG Zhaoquan. Anticorrosion Performance of 8YSZ Ceramics in Simulated Aqueous Environment of Pressurized Water Reactor [J]. Journal of Inorganic Materials, 2024, 39(7): 803-809. |
[10] | WU Yuhao, PENG Renci, CHENG Chunyu, YANG Li, ZHOU Yichun. First-principles Study on Mechanical Properties and Melting Curve of HfxTa1-xC System [J]. Journal of Inorganic Materials, 2024, 39(7): 761-768. |
[11] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[12] | SUN Haiyang, JI Wei, WANG Weimin, FU Zhengyi. Design, Fabrication and Properties of Periodic Ordered Structural Composites with TiB-Ti Units [J]. Journal of Inorganic Materials, 2024, 39(6): 662-670. |
[13] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[14] | LIU Guoang, WANG Hailong, FANG Cheng, HUANG Feilong, YANG Huan. Effect of B4C Content on Mechanical Properties and Oxidation Resistance of (Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 697-706. |
[15] | SU Yi, SHI Yangfan, JIA Chenglan, CHI Pengtao, GAO Yang, MA Qingsong, CHEN Sian. Microstructure and Properties of C/HfC-SiC Composites Prepared by Slurry Impregnation Assisted Precursor Infiltration Pyrolysis [J]. Journal of Inorganic Materials, 2024, 39(6): 726-732. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||