Journal of Inorganic Materials ›› 2017, Vol. 32 ›› Issue (6): 581-586.DOI: 10.15541/jim20160488
• Orginal Article • Previous Articles Next Articles
BAO Yan, KANG Qiao-Ling
Received:
2016-08-29
Revised:
2016-10-14
Published:
2017-06-20
Online:
2017-05-27
Supported by:
CLC Number:
BAO Yan, KANG Qiao-Ling. Fabrication of Hollow TiO2 Spheres and Their Effect on Thermal Insulation Property of Polyacrylate Film[J]. Journal of Inorganic Materials, 2017, 32(6): 581-586.
Fig. 3 Effect of hollow cavity of hollow TiO2 spheres on thermal conductivity of polyacrylate film(a) Pure polyacrylate film; (b-f) Composite films containing hollow TiO2 spheres with hollow diameter of 150, 200, 300, 400, and 500 nm, respectively
Sample | SBET/(m2·g-1) | Pore volume / (cm3·g-1) | Pore size / nm |
---|---|---|---|
150 nm | 58.2790 | 0.005458 | 33.2 |
500 nm | 50.9239 | 0.002651 | 14.5 |
Table1 Specific surface area, pore volume, average pore size of hollow TiO2 spheres samples
Sample | SBET/(m2·g-1) | Pore volume / (cm3·g-1) | Pore size / nm |
---|---|---|---|
150 nm | 58.2790 | 0.005458 | 33.2 |
500 nm | 50.9239 | 0.002651 | 14.5 |
Fig. 5 Effect of hollow cavity of hollow TiO2 spheres on light reflectivity of polyacrylate film(a) Pure polyacrylate film; (b-f) Composite films containing hollow TiO2 spheres with hollow diameter of 150, 200, 300, 400, and 500 nm, respectively
Fig. 6 Effect of hollow cavity of hollow TiO2 spheres on tensile strength and elongation at break of polyacrylate film(a) Pure polyacrylate film; (b-f) Composite films containing hollow TiO2 spheres with hollow diameter of 150, 200, 300, 400, and 500 nm, respectively
Fig. 7 Effect of hollow TiO2 spheres content on thermal conductivity of polyacrylate film(a) Pure polyacrylate film; (b-e) Composite films containing hollow TiO2 spheres of 1%, 2%, 3% and 4%, respectively
Fig. 8 Effect of hollow TiO2 spheres content on light reflectivity of polyacrylate film(a) Pure polyacrylate film; (b-e) Composite films containing hollow TiO2 spheres of 1%, 2%, 3% and 4%, respectively
Fig. 9 Effect of hollow TiO2 spheres content on tensile strength and elongation at break of polyacrylate film(a) Pure polyacrylate film; (b-e) Composite films containing hollow TiO2 spheres of 1%, 2%, 3% and 4%, respectively
[1] | YIN L W, BANDO Y, LI M S, et al.Growth of semiconducting GaN hollow spheres and nanotubes with very thin shells via a controllable liquid gallium-gas interface chemical reaction.Small, 2005, 1(11): 1094-1099. |
[2] | WANG W S, ZHEN L, XU C Y, et al.Aqueous solution synthesis of Cd(OH)2 hollow microspheres via Ostwald ripening and their conversion to CdO hollow microspheres.The Journal of Physical Chemistry C, 2008, 112(37): 14360-14366. |
[3] | ZHOU L, ZHAO D, LOU X W.Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries.Advanced Materials, 2012, 24(6): 745-748. |
[4] | JOO J B, ZHANG Q, LEE I, et al.Mesoporous anatase titania hollow nanostructures though silica-protected calcination.Advanced Functional Materials, 2012, 22(1): 166-174. |
[5] | GAO T, JELLE B P, SANDBERG L I C, et al. Monodisperse hollow silica nanospheres for nano insulation materials: synthesis, characterization, and life cycle assessment.ACS Applied Materials & Interfaces, 2013, 5(3): 761-767. |
[6] | HAN L, LIU R, LI C, et al.Controlled synthesis of double-shelled CeO2 hollow spheres and enzyme-free electrochemical bio-sensing properties for uric acid. Journal of Materials Chemistry, 2012, 22(33): 17079-17085. |
[7] | ZENG Y, WANG X, WANG H, et al.Multi-shelled titania hollow spheres fabricated by a hard template strategy: enhanced photocatalytic activity.Chemical Communications, 2010, 46(24): 4312-4314. |
[8] | ZHANG H, DU G, LU W, et al.Porous TiO2 hollow nanospheres: synthesis, characterization and enhanced photocatalytic properties.CrystEngComm, 2012, 14(10): 3793-3801. |
[9] | XI G, YAN Y, MA Q, et al.Synthesis of multiple-shell WO3 hollow spheres by a binary carbonaceous template route and their applications in visible-light photocatalysis.Chemistry-A European Journal, 2012, 18(44): 13949-13953. |
[10] | WANG B, CHEN J S, WU H B, et al.Quasiemulsion-templated formation of α-Fe2O3 hollow spheres with enhanced lithium storage properties.Journal of the American Chemical Society, 2011, 133(43): 17146-17148. |
[11] | YAO Y, MCDOWELL M T, RYU I, et al.Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life.Nano letters, 2011, 11(7): 2949-2954. |
[12] | JIN L, XU L, MOREIN C, et al.Titanium containing γ-MnO2 (TM) hollow spheres: one-step synthesis and catalytic activities in Li/air batteries and oxidative chemical reactions.Advanced Functional Materials, 2010, 20(19): 3373-3382. |
[13] | ZHOUJ K, LV L, YU J, et al.Synthesis of self-organized polycrystalline F-doped TiO2 hollow microspheres and their photocatalytic activity under visible light.The Journal of Physical Chemistry C, 2008, 112(14): 5316-5321. |
[14] | CHEN J S, LOU X W D. SnO2-based nanomaterials: synthesis and application in lithium-ion batteries.small, 2013, 9(11): 1877-1893. |
[15] | CHEN Y, CHEN H R, SHI J L.Construction of homogenous/heterogeneous hollow mesoporous silica nanostructures by silica-etching chemistry: principles, synthesis, and applications.Accounts of Chemical Research, 2013, 47(1): 125-137. |
[16] | WU D, ZHU F, LI J, et al.Monodisperse TiO2 hierarchical hollow spheres assembled by nanospindles for dye-sensitized solar cells.Journal of Materials Chemistry, 2012, 22(23): 11665-11671. |
[17] | AGRAWAL M, PICH A, ZAFEIROPOULOS N E, et al.Fabrication of hollow titania microspheres with tailored shell thickness.Colloid and Polymer Science, 2008, 286(5): 593-601. |
[18] | ZHANG K, ZHANG X, CHEN H, et al.Hollow titania spheres with movable silica spheres inside.Langmuir, 2004, 20(26): 11312-11314. |
[19] | LI Y, KUNITAKE T, FUJIKAWA S.Efficient fabrication and enhanced photocatalytic activities of 3D-ordered films of titania hollow spheres.The Journal of Physical Chemistry B, 2006, 110(26): 13000-13004. |
[20] | LI H, HA C S, KIM I.Facile fabrication of hollow silica and titania microspheres using plasma-treated polystyrene spheres as sacrificial templates.Langmuir, 2008, 24(19): 10552-10556. |
[21] | LI X, XIONG Y, LI Z, et al.Large-scale fabrication of TiO2 hierarchical hollow spheres.Inorganic Chemistry, 2006, 45(9): 3493-3495. |
[22] | NAKASHIMA T, KIMIZUKA N.Interfacial synthesis of hollow TiO2 microspheres in ionic liquids.Journal of the American Chemical Society, 2003, 125(21): 6386-6387. |
[23] | BALA H, YU Y, ZHANG Y.Synthesis and photocatalytic oxidation properties of titania hollow spheres.Materials Letters, 2008, 62(14): 2070-2073. |
[24] | SHANG S, JOAO X, CHEN D.Template-free fabrication of TiO2 hollow spheres and their photocatalytic properties.ACS Applied Materials & Interfaces, 2012, 4(2): 860-865. |
[25] | REN L, LI Y, HOU J, et al.Preparation and enhanced photocatalytic activity of TiO2 nanocrystals with internal pores.ACS Applied Materials & Interfaces, 2014, 6(3): 1608-1615. |
[26] | LI D, QIN Q, DUAN X, et al.General one-pot template-free hydrothermal method to metal oxide hollow spheres and their photocatalytic activities and lithium storage properties.ACS Applied Materials & Interfaces, 2013, 5(18): 9095-9100. |
[27] | ZHUANG Y, SUN J, GUAN M.Template free preparation of TiO2/C core-shell hollow sphere for high performance photocatalysis.Journal of Alloys and Compounds, 2016, 662: 84-88. |
[28] | VAZ F A S, DE CASTRO P M, MOLINA C, et al. External polyacrylate-coating as alternative material for preparation of photopolymerized Sol-Gel monolithic column.Talanta, 2008, 76(1): 226-229. |
[29] | BAO Y, SHI C, YANG Y, et al.Effect of hollow silica spheres on water vapor permeability of polyacrylate film.RSC Advances, 2015, 5(15): 11485-11493. |
[30] | BAO Y, YANG Y, MA J.Fabrication of monodisperse hollow silica spheres and effect on water vapor permeability of polyacrylate membrane.Journal of Colloid and Interface Science, 2013, 407: 155-163. |
[31] | YUE Q, LI Y, KONG M, et al.Ultralow density, hollow silica foams produced through interfacial reaction and their exceptional properties for environmental and energy applications.Journal of Materials Chemistry, 2011, 21(32): 12041-12046. |
[32] | LI B, YUANG J, AN Z, et al.Effect of microstructure and physical parameters of hollow glass microsphere on insulation performance. Materials Letters, 2011, 65(12): 1992-1994. |
[33] | QIAN BO ZHANG, ZHU JIAN FANG.Technology progress of thermal insulation materials of building energy efficiency.Journal of Building Energy Efficiency, 2009, 37(2): 56-60. |
[34] | TACHIBANA Y, HARA K, SAYAMA K, et al.Quantitative analysis of light-harvesting efficiency and electron-transfer yield in ruthenium-dye-sensitized nanocrystalline TiO2 solar cells.Chemistry of Materials, 2002, 14(6): 2527-2535. |
[35] | T LI H, BIAN Z, ZHU J, et al. Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity. Journal of the American Chemical Society, 2007, 129(27): 8406-8407. |
[36] | LEE J, HWANG S H, YUN J, et al.Fabrication of SiO2/TiO2 double-shelled hollow nanospheres with controllable size via Sol-Gel reaction and sonication-mediated etching.ACS Applied Materials & Interfaces, 2014, 6(17): 15420-15426. |
[37] | BAO Y, LI MIAO, MA J.The effect of hollow SiO2 spheres on thermal insulation property of polyacrylate film.Journal of Functional Materials, 2016, 47(7): 7022-7027. |
[38] | LEI ZHUO YAN, WANG ZHI, FAN HENG BING.Effect of B2O3 doping and phosphate impregnation on oxidation resistance and mechanical properties of mesocarbon microbead composites.Journal of Inorganic Materials. 2015, 30(7): 769-773. |
[39] | ZHU PING, SUI SHU YING, LI JING.Study on performance of Nano-Far-Infrared PET Fiber.Nannoscience&Nanotechnology. 2007, 4(4): 17-21. |
[40] | WANG F, LIANG J, TANG Q, et al.Preparation and performance of thermal insulation energy saving coating materials for exterior wall.Journal of Nanoscience and Nanotechnology, 2014, 14(5): 3861-3867. |
[1] | FAN Wugang, CAO Xiong, ZHOU Xiang, LI Ling, ZHAO Guannan, ZHANG Zhaoquan. Anticorrosion Performance of 8YSZ Ceramics in Simulated Aqueous Environment of Pressurized Water Reactor [J]. Journal of Inorganic Materials, 2024, 39(7): 803-809. |
[2] | WU Yuhao, PENG Renci, CHENG Chunyu, YANG Li, ZHOU Yichun. First-principles Study on Mechanical Properties and Melting Curve of HfxTa1-xC System [J]. Journal of Inorganic Materials, 2024, 39(7): 761-768. |
[3] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[4] | SUN Haiyang, JI Wei, WANG Weimin, FU Zhengyi. Design, Fabrication and Properties of Periodic Ordered Structural Composites with TiB-Ti Units [J]. Journal of Inorganic Materials, 2024, 39(6): 662-670. |
[5] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[6] | LIU Guoang, WANG Hailong, FANG Cheng, HUANG Feilong, YANG Huan. Effect of B4C Content on Mechanical Properties and Oxidation Resistance of (Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 697-706. |
[7] | SU Yi, SHI Yangfan, JIA Chenglan, CHI Pengtao, GAO Yang, MA Qingsong, CHEN Sian. Microstructure and Properties of C/HfC-SiC Composites Prepared by Slurry Impregnation Assisted Precursor Infiltration Pyrolysis [J]. Journal of Inorganic Materials, 2024, 39(6): 726-732. |
[8] | ZHANG Rui, ZHANG Kan, YUAN Mengya, GU Xinlei, ZHENG Weitao. Nitrogen Vacancy Regulated Lattice Distortion on Improvement of (NbMoTaW)Nx Thin Films: Mechanical Properties and Wear Resistance [J]. Journal of Inorganic Materials, 2024, 39(6): 715-725. |
[9] | ZHANG Yuchen, LU Zhiyao, HE Xiaodong, SONG Guangping, ZHU Chuncheng, ZHENG Yongting, BAI Yuelei. Predictions of Phase Stability and Properties of S-group Elements Containing MAX Borides [J]. Journal of Inorganic Materials, 2024, 39(2): 225-232. |
[10] | LI Lei, CHENG Qunfeng. Recent Advances in the High Performance MXenes Nanocomposites [J]. Journal of Inorganic Materials, 2024, 39(2): 153-161. |
[11] | LIU Yanyan, XIE Xi, LIU Zengqian, ZHANG Zhefeng. Metal Matrix Composites Reinforced by MAX Phase Ceramics: Fabrication, Properties and Bioinspired Designs [J]. Journal of Inorganic Materials, 2024, 39(2): 145-152. |
[12] | WANG Bo, CAI Delong, ZHU Qishuai, LI Daxin, YANG Zhihua, DUAN Xiaoming, LI Yanan, WANG Xuan, JIA Dechang, ZHOU Yu. Mechanical Properties and Thermal Shock Resistance of SrAl2Si2O8 Reinforced BN Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(10): 1182-1188. |
[13] | YANG Pingjun, LI Tiehu, LI Hao, DANG Alei. Effect of Graphene on Graphitization, Electrical and Mechanical Properties of Epoxy Resin Carbon Foam [J]. Journal of Inorganic Materials, 2024, 39(1): 107-112. |
[14] | NI Xiaoshi, LIN Ziyang, QIN Muyan, YE Song, WANG Deping. Bioactivity and Mechanical Property of PMMA Bone Cement: Effect of Silanized Mesoporous Borosilicate Bioglass Microspheres [J]. Journal of Inorganic Materials, 2023, 38(8): 971-977. |
[15] | FU Shi, YANG Zengchao, LI Jiangtao. Progress of High Strength and High Thermal Conductivity Si3N4 Ceramics for Power Module Packaging [J]. Journal of Inorganic Materials, 2023, 38(10): 1117-1132. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||