Journal of Inorganic Materials ›› 2025, Vol. 40 ›› Issue (6): 563-574.DOI: 10.15541/jim20240520
• REVIEW • Previous Articles Next Articles
WU Qiong1(), SHEN Binglin2, ZHANG Maohua2, YAO Fangzhou2, XING Zhipeng1, WANG Ke1(
)
Received:
2024-12-16
Revised:
2025-02-14
Published:
2025-06-20
Online:
2025-02-19
Contact:
WANG Ke, professor. E-mail: wang-ke@tsinghua.edu.cnAbout author:
WU Qiong (1993-), male, PhD. E-mail: wu-qiong@mail.tsinghua.edu.cn
Supported by:
CLC Number:
WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics[J]. Journal of Inorganic Materials, 2025, 40(6): 563-574.
Fig. 2 Schematic diagrams of the internal state of textured ceramics prepared by TGG method (a) before, (b) during, (c) after sintering and (d) at the interface between template and ceramic
System | Template | F001/% | ɛ33 | Random d33/(pC•N-1) | Textured d33/(pC•N-1) | Tm/℃ | tanδ | Year | Ref. |
---|---|---|---|---|---|---|---|---|---|
PMN-0.285PT | NBT-0.6PT | 87 | 3490 | — | 855 | 129 | 0.01 | 2011 | [ |
PMN-0.325PT | 1% BT | 98 | 2591 | — | 1000 | ~160 | 0.006 | 2012 | [ |
Mn-doped PMN-0.325PT | 1% BT | 96 | 2233 | 455 | 450 | ~165 | 0.0044 | 2018 | [ |
Sm-doped PMN-0.3PT | 5% BT | 90 | ~4500 | — | 1040 | 90 | 0.05 | 2021 | [ |
CuO/B2O3 sintered PMN-0.28PT | 1% BT | 99.5 | 3450 | 340 | 1180 | ~150 | 0.008 | 2021 | [ |
Sm-doped PMN-0.29PT | 5% BT | 82 | 5130 | 500 | 810 | 102 | 0.056 | 2021 | [ |
PMN-0.31PT | 3% BT | 93 | 3560 | 660 | 1020 | 134 | 0.019 | 2022 | [ |
Eu-doped PMN-0.28PT | 2% BT | 98 | ~6000 | 1300 | 1950 | ~80 | 0.015 | 2022 | [ |
Sm-doped PMN-0.26PT | 1% BT | 99 | 10115 | 1245 | 1882 | 76 | 0.042 | 2023 | [ |
Er-doped PMN-0.33PT | 5% BT | 36.4 | ~5000 | — | 634 | ~100 | ~0.02 | 2023 | [ |
Table 1 Electric properties of PMN-PT textured piezoelectric ceramics[63-72]
System | Template | F001/% | ɛ33 | Random d33/(pC•N-1) | Textured d33/(pC•N-1) | Tm/℃ | tanδ | Year | Ref. |
---|---|---|---|---|---|---|---|---|---|
PMN-0.285PT | NBT-0.6PT | 87 | 3490 | — | 855 | 129 | 0.01 | 2011 | [ |
PMN-0.325PT | 1% BT | 98 | 2591 | — | 1000 | ~160 | 0.006 | 2012 | [ |
Mn-doped PMN-0.325PT | 1% BT | 96 | 2233 | 455 | 450 | ~165 | 0.0044 | 2018 | [ |
Sm-doped PMN-0.3PT | 5% BT | 90 | ~4500 | — | 1040 | 90 | 0.05 | 2021 | [ |
CuO/B2O3 sintered PMN-0.28PT | 1% BT | 99.5 | 3450 | 340 | 1180 | ~150 | 0.008 | 2021 | [ |
Sm-doped PMN-0.29PT | 5% BT | 82 | 5130 | 500 | 810 | 102 | 0.056 | 2021 | [ |
PMN-0.31PT | 3% BT | 93 | 3560 | 660 | 1020 | 134 | 0.019 | 2022 | [ |
Eu-doped PMN-0.28PT | 2% BT | 98 | ~6000 | 1300 | 1950 | ~80 | 0.015 | 2022 | [ |
Sm-doped PMN-0.26PT | 1% BT | 99 | 10115 | 1245 | 1882 | 76 | 0.042 | 2023 | [ |
Er-doped PMN-0.33PT | 5% BT | 36.4 | ~5000 | — | 634 | ~100 | ~0.02 | 2023 | [ |
System | Template | F001/% | ɛ33 | Random d33/(pC•N-1) | Textured d33/(pC•N-1) | Tm/℃ | tanδ | Year | Ref. |
---|---|---|---|---|---|---|---|---|---|
Mn-doped PMN-0.25PZ-0.35PT | 3% BT | 93 | — | 230 | 720 | 210 | 0.003 | 2012 | [ |
PMN-0.25PZ-0.35PT | 5% BT | 90 | 2310 | 230 | 1100 | 204 | — | 2013 | [ |
Quenched PMN-0.25PZ-0.35PT | 5% BT | 92 | 1815 | 275 | 750 | 265 | 0.01 | 2019 | [ |
PMN-0.22PZ-0.38PT | 5% BT | 98 | 1100 | ~250 | 950 | 235 | — | 2022 | [ |
PMN-0.25PZ-0.35PT | 2% BT | 98 | 1000 | 230 | 1470 | ~225 | 0.011 | 2022 | [ |
CuO sintered PMN-0.25PZ-0.33PT | 5% BT | 98 | 1720 | 235 | 860 | 222 | 0.008 | 2022 | [ |
PMN-0.25PZ-0.33PT | 5% BT | 98 | 1500 | — | 1080 | ~225 | — | 2023 | [ |
Mn-doped PMN-0.25PZ-0.35PT | 2% BT | 99 | 2100 | 223 | 862 | — | ~0.003 | 2023 | [ |
CuO sintered PMN-0.47PZ-0.39PT | 1% BT | 92 | 1000 | 143 | 278 | 304 | ~0.007 | 2023 | [ |
PMN-PZ-PT | 3% BT | 98 | 2410 | — | 1220 | 229 | 0.012 | 2024 | [ |
Table 2 Electric properties of PMN-PZ-PT textured piezoelectric ceramics[76-85]
System | Template | F001/% | ɛ33 | Random d33/(pC•N-1) | Textured d33/(pC•N-1) | Tm/℃ | tanδ | Year | Ref. |
---|---|---|---|---|---|---|---|---|---|
Mn-doped PMN-0.25PZ-0.35PT | 3% BT | 93 | — | 230 | 720 | 210 | 0.003 | 2012 | [ |
PMN-0.25PZ-0.35PT | 5% BT | 90 | 2310 | 230 | 1100 | 204 | — | 2013 | [ |
Quenched PMN-0.25PZ-0.35PT | 5% BT | 92 | 1815 | 275 | 750 | 265 | 0.01 | 2019 | [ |
PMN-0.22PZ-0.38PT | 5% BT | 98 | 1100 | ~250 | 950 | 235 | — | 2022 | [ |
PMN-0.25PZ-0.35PT | 2% BT | 98 | 1000 | 230 | 1470 | ~225 | 0.011 | 2022 | [ |
CuO sintered PMN-0.25PZ-0.33PT | 5% BT | 98 | 1720 | 235 | 860 | 222 | 0.008 | 2022 | [ |
PMN-0.25PZ-0.33PT | 5% BT | 98 | 1500 | — | 1080 | ~225 | — | 2023 | [ |
Mn-doped PMN-0.25PZ-0.35PT | 2% BT | 99 | 2100 | 223 | 862 | — | ~0.003 | 2023 | [ |
CuO sintered PMN-0.47PZ-0.39PT | 1% BT | 92 | 1000 | 143 | 278 | 304 | ~0.007 | 2023 | [ |
PMN-PZ-PT | 3% BT | 98 | 2410 | — | 1220 | 229 | 0.012 | 2024 | [ |
System | Template | F001/% | ɛ33 | Random d33/(pC•N-1) | Textured d33/(pC•N-1) | Tm/℃ | tanδ | Year | Ref. |
---|---|---|---|---|---|---|---|---|---|
PIN-0.40PMN-0.32PT | 5% BT | 93 | ~2500 | 416 | 824 | 203 | ~0.025 | 2015 | [ |
PMN-16PYN-0.38PT | 5% BT | 91 | ~2000 | — | — | 214 | 0.019 | 2016 | [ |
PIN-0.30PMN-0.34PT | 5% BT | 62 | 2668 | 450 | 560 | 220 | ~0.04 | 2016 | [ |
PIN-0.40PMN-0.32PT | 5% BT | 94 | ~2500 | 429 | 841 | ~200 | — | 2016 | [ |
CuO-doped PIN-0.4PMN-0.32PT | 5% BT | 97 | ~2430 | 416 | 927 | 200 | 0.013 | 2017 | [ |
PMN-16PYN-0.38PT | 5% BT | 91 | 2110 | — | — | 213 | 0.022 | 2017 | [ |
PNN-0.15PZ-0.3PT | 2% BT | 82 | ~7500 | ~1020 | 1210 | ~103 | ~0.031 | 2020 | [ |
PYN-0.52PMN-0.32PT | 3% BT | ~99 | ~2000 | — | — | 205 | ~0.01 | 2020 | [ |
PYN-0.41MN-0.38PT | 5% BT | 83 | ~2000 | 413 | 409 | 224 | ~0.050 | 2020 | [ |
CuO-doped PYN-46PMN-34PT | — | 94 | 1960 | 380 | 460 | — | 0.019 | 2020 | [ |
Mn-doped PIN-0.42PMN-0.34PT | 2% BT | 84 | 1514 | 370 | 517 | 205 | 0.0049 | 2021 | [ |
PIN-0.445PSN-0.365PT | 5% BT | 99.2 | 2310 | 240 | 1090 | 247 | 0.012 | 2021 | [ |
BZZ-0.375BS-0.60PT | 5% BT | 91 | 980 | 216 | 353 | 403 | 0.024 | 2021 | [ |
BMT-0.6PMN-0.3PT | — | 90 | 4500 | — | — | — | — | 2022 | [ |
PSN-0.20PZ-0.41PT | 3% BT | ~95 | 1300 | 265 | 580 | 299 | 0.007 | 2022 | [ |
PNN-0.21PZ-0.37PT | 3% BT | 96 | ~3000 | 730 | 830 | ~170 | ~0.017 | 2022 | [ |
PIN-0.445PSN-0.365PT | 2.5% BT | 99 | 2155 | — | 770 | ~270 | 0.0072 | 2022 | [ |
Mn&Cu-doped PIN-0.42PMN-0.34PT | 2% BT | 97 | 1498 | 304 | 725 | 205 | 0.0045 | 2022 | [ |
MnO2-doped PIN-0.46PSN-0.37PT | 3% BT | 99 | 1739 | 181 | 735 | 244 | 0.0039 | 2023 | [ |
MnO2-doped PIN-0.42PMN-0.34PT | 2% BT | 98 | 1498 | 304 | 725 | ~205 | 0.0042 | 2023 | [ |
PIN-0.445PSN-0.365PT | 3% BT | — | 2100 | — | 840 | 261 | 0.006 | 2023 | [ |
PIN-0.46PMN-0.3PT | 5% BT | ~99 | 1960 | 270 | 860 | 195 | 0.007 | 2023 | [ |
CuO-doped PMN-0.29PIN-0.34PT | 3% BT | 97 | ~2000 | ~450 | 578 | 231 | — | 2023 | [ |
PNN-0.25PZ-0.39PT | 3% BT | 98 | 2790 | 443 | 1165 | 197 | 0.021 | 2023 | [ |
PZT-0.11PZN-0.06PNN | 10% BZT | 63 | 1123 | — | 318 | 230 | ~0.021 | 2024 | [ |
PNT-0.34PZ-0.42PT | 5% BT | 98 | 2499 | ~250 | 820 | 180 | — | 2024 | [ |
Li2CO3-doped PNN-0.16PZ-0.34PT | 2% BT | 85 | 3942 | 943 | 1180 | 146 | ~0.04 | 2024 | [ |
Table 3 Electric properties of ternary systems except the PMN-PZ-PT textured piezoelectric ceramics[40,48,57,59,86 -108]
System | Template | F001/% | ɛ33 | Random d33/(pC•N-1) | Textured d33/(pC•N-1) | Tm/℃ | tanδ | Year | Ref. |
---|---|---|---|---|---|---|---|---|---|
PIN-0.40PMN-0.32PT | 5% BT | 93 | ~2500 | 416 | 824 | 203 | ~0.025 | 2015 | [ |
PMN-16PYN-0.38PT | 5% BT | 91 | ~2000 | — | — | 214 | 0.019 | 2016 | [ |
PIN-0.30PMN-0.34PT | 5% BT | 62 | 2668 | 450 | 560 | 220 | ~0.04 | 2016 | [ |
PIN-0.40PMN-0.32PT | 5% BT | 94 | ~2500 | 429 | 841 | ~200 | — | 2016 | [ |
CuO-doped PIN-0.4PMN-0.32PT | 5% BT | 97 | ~2430 | 416 | 927 | 200 | 0.013 | 2017 | [ |
PMN-16PYN-0.38PT | 5% BT | 91 | 2110 | — | — | 213 | 0.022 | 2017 | [ |
PNN-0.15PZ-0.3PT | 2% BT | 82 | ~7500 | ~1020 | 1210 | ~103 | ~0.031 | 2020 | [ |
PYN-0.52PMN-0.32PT | 3% BT | ~99 | ~2000 | — | — | 205 | ~0.01 | 2020 | [ |
PYN-0.41MN-0.38PT | 5% BT | 83 | ~2000 | 413 | 409 | 224 | ~0.050 | 2020 | [ |
CuO-doped PYN-46PMN-34PT | — | 94 | 1960 | 380 | 460 | — | 0.019 | 2020 | [ |
Mn-doped PIN-0.42PMN-0.34PT | 2% BT | 84 | 1514 | 370 | 517 | 205 | 0.0049 | 2021 | [ |
PIN-0.445PSN-0.365PT | 5% BT | 99.2 | 2310 | 240 | 1090 | 247 | 0.012 | 2021 | [ |
BZZ-0.375BS-0.60PT | 5% BT | 91 | 980 | 216 | 353 | 403 | 0.024 | 2021 | [ |
BMT-0.6PMN-0.3PT | — | 90 | 4500 | — | — | — | — | 2022 | [ |
PSN-0.20PZ-0.41PT | 3% BT | ~95 | 1300 | 265 | 580 | 299 | 0.007 | 2022 | [ |
PNN-0.21PZ-0.37PT | 3% BT | 96 | ~3000 | 730 | 830 | ~170 | ~0.017 | 2022 | [ |
PIN-0.445PSN-0.365PT | 2.5% BT | 99 | 2155 | — | 770 | ~270 | 0.0072 | 2022 | [ |
Mn&Cu-doped PIN-0.42PMN-0.34PT | 2% BT | 97 | 1498 | 304 | 725 | 205 | 0.0045 | 2022 | [ |
MnO2-doped PIN-0.46PSN-0.37PT | 3% BT | 99 | 1739 | 181 | 735 | 244 | 0.0039 | 2023 | [ |
MnO2-doped PIN-0.42PMN-0.34PT | 2% BT | 98 | 1498 | 304 | 725 | ~205 | 0.0042 | 2023 | [ |
PIN-0.445PSN-0.365PT | 3% BT | — | 2100 | — | 840 | 261 | 0.006 | 2023 | [ |
PIN-0.46PMN-0.3PT | 5% BT | ~99 | 1960 | 270 | 860 | 195 | 0.007 | 2023 | [ |
CuO-doped PMN-0.29PIN-0.34PT | 3% BT | 97 | ~2000 | ~450 | 578 | 231 | — | 2023 | [ |
PNN-0.25PZ-0.39PT | 3% BT | 98 | 2790 | 443 | 1165 | 197 | 0.021 | 2023 | [ |
PZT-0.11PZN-0.06PNN | 10% BZT | 63 | 1123 | — | 318 | 230 | ~0.021 | 2024 | [ |
PNT-0.34PZ-0.42PT | 5% BT | 98 | 2499 | ~250 | 820 | 180 | — | 2024 | [ |
Li2CO3-doped PNN-0.16PZ-0.34PT | 2% BT | 85 | 3942 | 943 | 1180 | 146 | ~0.04 | 2024 | [ |
[1] | COLLINS E, PANTOYA M, NEUBER A A, et al. Piezoelectric ignition of nanocomposite energetic materials. Journal of Propulsion and Power, 2014, 30(1): 15. |
[2] | ZHOU T, WANG S, BAO D, et al. Correlation and comprehensive selection of the piezoelectric ignition material parameters. Ferroelectrics, 1997, 195(1): 97. |
[3] | WAN X, CONG H, JIANG G, et al. A review on PVDF nanofibers in textiles for flexible piezoelectric sensors. ACS Applied Nano Materials, 2023, 6(3): 1522. |
[4] | LU B, XIE L, LEI H, et al. Research progress in self-powered pressure sensors for Internet of healthcare. Advanced Materials Technologies, 2024, 9(21): 2301480. |
[5] | ZHI C, SHI S, SI Y, et al. Recent progress of wearable piezoelectric pressure sensors based on nanofibers, yarns, and their fabrics via electrospinning. Advanced Materials Technologies, 2022, 8(5): 2201161. |
[6] | MESHKINZAR A, AL-JUMAILY A M. Cylindrical piezoelectric PZT transducers for sensing and actuation. Sensors, 2023, 23(6): 3042. |
[7] | PYUN J Y, KIM Y H, PARK K K. Design of piezoelectric acoustic transducers for underwater applications. Sensors, 2023, 23(4): 1821. |
[8] | JIN H, GAO X, REN K, et al. Review on piezoelectric actuators based on high-performance piezoelectric materials. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69(11): 3057. |
[9] | LIU J, GAO X, JIN H, et al. Miniaturized electromechanical devices with multi-vibration modes achieved by orderly stacked structure with piezoelectric strain units. Nature Communications, 2022, 13: 6567. |
[10] | GAO X, YANG J, WU J, et al. Piezoelectric actuators and motors: materials, designs, and applications. Advanced Materials Technologies, 2019, 5: 1900716. |
[11] | ZHOU X, WU S, WANG X, et al. Review on piezoelectric actuators: materials, classifications, applications, and recent trends. Frontiers of Mechanical Engineering, 2024, 19(1): 6. |
[12] | YU Y, CHENG Z, CHANG J, et al. Enhanced in-plane omnidirectional energy harvesting from extremely weak magnetic fields via fourfold symmetric magneto-mechano-electric coupling. Advanced Energy Materials, 2024, 14(43): 2402487. |
[13] | YU Z, YANG J, XU L, et al. Giant tridimensional power responses in a T-shaped magneto-mechano-electric energy harvester. Energy & Environmental Science, 2024, 17(4): 1426. |
[14] | YU Z, YANG J, CAO J, et al. A PMNN-PZT piezoceramic based magneto-mechano-electric coupled energy harvester. Advanced Functional Materials, 2022, 32(25): 2111140. |
[15] | YU Z, LI Z, YUAN X, et al. Enhanced extremely weak-field energy harvesting via magnetic flux and stress concentration effects in ferromagnetic/ferroelectric composite. Applied Physics Letters, 2022, 121(7): 072902. |
[16] | YUAN X, GAO X, YANG J, et al. The large piezoelectricity and high power density of a 3D-printed multilayer copolymer in a rugby ball-structured mechanical energy harvester. Energy & Environmental Science, 2020, 13(1): 152. |
[17] | ZHU R, CHENG Z, LV X, et al. Piezo-turned magnet rotation for ELF/SLF cross-medium communication in omni-direction. Advanced Optical Materials, 2024, 12(20): 2400461. |
[18] | CHENG Z, ZHOU J, WANG B, et al. A bionic flapping magnetic-dipole resonator for ELF cross-medium communication. Advanced Science, 2024, 11(30): 2403746. |
[19] | 智研瞻产业研究院. 中国压电材料行业报告: 概述、行业企业布局、产业链、应用机遇及发展前景分析. (2024-07-04) [2024-12-16]. https://roll.sohu.com/a/790593871_120815556. |
[20] | WANG J, QIN X, LIU Z, et al. Development and performance analysis of hemispherical piezoelectric transducer for road applications. Ferroelectrics, 2021, 584(1): 70. |
[21] | ZHENG X, HE L, WANG S, et al. A review of piezoelectric energy harvesters for harvesting wind energy. Sensors and Actuators A: Physical, 2023, 352: 114190. |
[22] | HE L, HAN Y, SUN L, et al. A rotating piezoelectric- electromagnetic hybrid harvester for water flow energy. Energy Conversion and Management, 2023, 290: 117221. |
[23] | ZHANG L, SUN D, CHAI M, et al. Ultrafast photoinduced strain in super-tetragonal PbTiO3 ferroelectric films. Science China Materials, 2021, 64(7): 1679. |
[24] | SHI X, HE J. Thermopower and harvesting heat. Science, 2021, 371(6527): 343. |
[25] | YANG Q Y, YANG S Q, QIU P F, et al. Flexible thermoelectrics based on ductile semiconductors. Science, 2022, 377(6608): 854. |
[26] | PARK S E, SHROUT T R. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. Journal of Applied Physics, 1997, 82(4): 1804. |
[27] | SERVICE R F. Shape-changing crystals get shiftier. Science, 1997, 275(5308): 1878. |
[28] | SUN Y, CHANG Y, WU J, et al. Ultrahigh energy harvesting properties in textured lead-free piezoelectric composites. Journal of Materials Chemistry A, 2019, 7(8): 3603. |
[29] | YANG Z, ZHOU S, ZU J, et al. High-performance piezoelectric energy harvesters and their applications. Joule, 2018, 2(4): 642. |
[30] | WU J, ZHANG S, LI F. Prospect of texture engineered ferroelectric ceramics. Applied Physics Letters, 2022, 121(12): 120501. |
[31] | LE FERRAND H. Magnetic slip casting for dense and textured ceramics: a review of current achievements and issues. Journal of the European Ceramic Society, 2021, 41(1): 24. |
[32] | WANG M, FAN L, WANG S, et al. Fabrication of textured cerium-doped lutetium oxyorthosilicate ceramics by slip casting in a strong magnetic field. Journal of the American Ceramic Society, 2022, 105(8): 5102. |
[33] | LI R Z, WANG X G, YUAN J H, et al. Enhanced high-temperature strength in textured (Ti1/3Zr1/3Hf1/3)B2 medium-entropy ceramics via strong magnetic field. Journal of the American Ceramic Society, 2023, 106(9): 5440. |
[34] | SONG Y, LIU P, WU W, et al. High-performance colossal permittivity for textured (Al+Nb) co-doped TiO2 ceramics sintered in nitrogen atmosphere. Journal of the European Ceramic Society, 2021, 41(7): 4146. |
[35] | SHI Y, HE Q, WANG A, et al. Effect of additive content on texture evolution and mechanical properties of Si3N4 ceramics prepared by hot pressing. Materials Science and Engineering: A, 2024, 898: 146348. |
[36] | LI J, JIANG Q, PAN Z, et al. Fabrication of silicon nitride with high thermal conductivity and flexural strength by hot-pressing flowing sintering. International Journal of Applied Ceramic Technology, 2024, 21(4): 2841. |
[37] | FU Z, WEI Y, LIU Y, et al. Polycrystalline thermosensitive ceramic oxides in CaCeNbWO8: density, texture, and thermal aging stability. Journal of the American Ceramic Society, 2021, 105(4): 2442. |
[38] | ZHANG Z, DUAN X, TIAN Z, et al. Texture and anisotropy of hot-pressed h-BN matrix composite ceramics with in situ formed YAG. Journal of Advanced Ceramics, 2022, 11(4): 532. |
[39] | WALTON R L, KUPP E R, MESSING G L. Additive manufacturing of textured ceramics: a review. Journal of Materials Research, 2021, 36(18): 3591. |
[40] | AKÇA E, DURAN C, KOWALSKI B, et al. Templated grain growth of Bi(Zn0.5Zr0.5)O3 modified BiScO3-PbTiO3piezoelectric ceramics for high temperature applications. Journal of Asian Ceramic Societies, 2021, 9(3): 874. |
[41] | ZHANG L, LIN J, LI G, et al. Dual-template textured BNT-based ceramics with ultra-low electrostrain hysteresis. Journal of the European Ceramic Society, 2024, 44(13): 7597. |
[42] | LI X, YAO M, LIN W, et al. Morphological evolution of plate-like B-site complex perovskite Pb(ZrxTi1-x)O3 microcrystals. Journal of Solid State Chemistry, 2023, 326: 124236. |
[43] | PENG J, LIU W, ZENG J, et al. Large electromechanical strain at high temperatures of novel <001> textured BiFeGaO3-BaTiO3 based ceramics. Journal of Materials Science & Technology, 2020, 48: 92. |
[44] | LIU Y, ZHANG H, MA C, et al. Fine grained textured BaTiO3- based piezoelectric ceramics with outstanding strain properties for the lead-free multilayer actuator. Ceramics International, 2024, 50(14): 26018. |
[45] | LAI L X, ZHAO Z H, TIAN S, et al. Ultrahigh electrostrain with excellent fatigue resistance in textured Nb5+-doped (Bi0.5Na0.5)TiO3- based piezoceramics. Journal of Advanced Ceramics, 2023, 12(3): 487. |
[46] | TATO M, SHIRNONISHI R, HAGIWARA M, et al. Reactive templated grain growth and thermoelectric power factor enhancement of textured CuFeO2 ceramics. ACS Applied Energy Materials, 2020, 3(2): 1979. |
[47] | WU Q, ZHANG F Q, WANG B, et al. A lead-free KNN-based, co-fired multilayered piezoceramic energy harvester with a high output current and power. Journal of Materiomics, 2025, 11(2): 100876. |
[48] | CHANG Y, SUN Y, WU J, et al. Formation mechanism of highly [001]c textured Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 relaxor ferroelectric ceramics with giant piezoelectricity. Journal of the European Ceramic Society, 2016, 36(8): 1973. |
[49] | LOTGERING F K. Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures—II. Journal of Inorganic & Nuclear Chemistry, 1960, 16(1/2): 100. |
[50] | LI L, DENG J, CHEN J, et al. Topochemical molten salt synthesis for functional perovskite compounds. Chemical Science, 2016, 7(2): 855. |
[51] | WU Q, ZHAO L, CHEN X, et al. Efficiently enhanced energy storage performance of Ba2Bi4Ti5O18 film by co-doping Fe3+ and Ta5+ ion with larger radius. Chinese Physics B, 2022, 31(9): 097701. |
[52] | WU Q, WU X, ZHAO Y S, et al. Design of lead-free films with high energy storage performance via inserting a single perovskite into Bi4Ti3O12. Chinese Physics Letters, 2020, 37(11): 118401. |
[53] | WU Q, CHEN X, ZHAO L, et al. The relaxor properties and energy storage performance of Aurivillius compounds with different number of perovskite-like layers. Journal of Alloys and Compounds, 2022, 911: 165081. |
[54] | WU Q, ZHAO Y, ZHOU Y, et al. Energy storage properties of composite films with relaxor antiferroelectric behaviors. Journal of Alloys and Compounds, 2021, 881: 160576. |
[55] | LI J L, QU W B, DANIELS J, et al. Lead zirconate titanate ceramics with aligned crystallite grains. Science, 2023, 380(6640): 87. |
[56] | PAN M J, RANDALL C A. A brief introduction to ceramic capacitors. IEEE Electrical Insulation Magazine, 2010, 26(3): 44. |
[57] | YANG S, LI J, LIU Y, et al. Textured ferroelectric ceramics with high electromechanical coupling factors over a broad temperature range. Nature Communications, 2021, 12: 1414. |
[58] | TOK A I Y, BOEY F Y C, LAM Y C. Non-newtonian fluid flow model for ceramic tape casting. Materials Science and Engineering: A, 2000, 280(2): 282. |
[59] | BIAN L, QI X, LI K, et al. High-performance [001]c-textured PNN-PZT relaxor ferroelectric ceramics for electromechanical coupling devices. Advanced Functional Materials, 2020, 30(25): 2001846. |
[60] | WU Y, SOON P S, LU J T, et al. Life cycle assessment of lead-free potassium sodium niobate versus lead zirconate titanate: energy and environmental impacts. EcoMat, 2024, 6(5): e12450. |
[61] | KUWATA J, UCHINO K, NOMURA S. Dielectric and piezoelectric properties of 0.91Pb(Zn1/3Nb2/3)O3-0.09PbTiO3 single crystals. Japanese Journal of Applied Physics, 1982, 21(9): 1298. |
[62] | ZHANG Y, XUE D, WU H, et al. Adaptive ferroelectric state at morphotropic phase boundary: coexisting tetragonal and rhombohedral phases. Acta Materialia, 2014, 71: 176. |
[63] | POTERALA S F, TROLIER-MCKINSTRY S, MEYER R J, et al. Processing, texture quality, and piezoelectric properties of <001>c textured (1-x)Pb(Mg1/3Nb2/3)TiO3-xPbTiO3 ceramics. Journal of Applied Physics, 2011, 110: 014105. |
[64] | YAN Y, WANG Y U, PRIYA S. Electromechanical behavior of [001]-textured Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics. Applied Physics Letters, 2012, 100(19): 192905. |
[65] | BERKSOY-YAVUZ A, MENSUR-ALKOY E. Enhanced soft character of crystallographically textured Mn-doped binary 0.675[Pb(Mg1/3Nb2/3)O3]-0.325[PbTiO3] ceramics. Journal of Electronic Materials, 2018, 47(11): 6557. |
[66] | JIA H, YANG S, ZHU W, et al. Improved piezoelectric properties of Pb(Mg1/3Nb2/3)O3-PbTiO3 textured ferroelectric ceramics via Sm-doping method. Journal of Alloys and Compounds, 2021, 881: 160666. |
[67] | YANG S, WANG M, WANG L, et al. Achieving both high electromechanical properties and temperature stability in textured PMN-PT ceramics. Journal of the American Ceramic Society, 2021, 105(5): 3322. |
[68] | ZHENG K, QUAN Y, ZHUANG J, et al. Achieving high piezoelectric performances with enhanced domain-wall contributions in <001>-textured Sm-modified PMN-29PT ceramics. Journal of the European Ceramic Society, 2021, 41(4): 24584. |
[69] | MORIANA A D, ZHANG S J. Determining the effects of BaTiO3 template alignment on template grain growth of Pb(Mg1/3Nb2/3)O3- PbTiO3 and effects on piezoelectric properties. Journal of the European Ceramic Society, 2022, 42(6): 2752. |
[70] | YAN Y, GENG L D, ZHU L F, et al. Ultrahigh piezoelectric performance through synergistic compositional and microstructural engineering. Advanced Science, 2022, 9(14): 2105715. |
[71] | TANG M, LIU X, WANG Y, et al. High piezoelectric response in [001] textured Sm3+ doped Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics. Journal of Applied Physics, 2023, 133(18): 184102. |
[72] | WANG Q, YAO M, LIN W, et al. Microstructure and electrical properties of Er-doped 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 ceramics with BaTiO3 templates. Ceramics International, 2023, 49(1): 437. |
[73] | LI F, CABRAL M J, XU B, et al. Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. Science, 2019, 364(6437): 264. |
[74] | PAN H, LAN S, XU S Q, et al. Ultrahigh energy storage in superparaelectric relaxor ferroelectrics. Science, 2021, 374(6563): 100. |
[75] | ZHANG S, LI F. High performance ferroelectric relaxor-PbTiO3 single crystals: status and perspective. Journal of Applied Physics, 2012, 111(3): 031301. |
[76] | YAN Y, CHO K H, PRIYA S. Piezoelectric properties and temperature stability of Mn-doped Pb(Mg1/3Nb2/3)-PbZrO3-PbTiO3 textured ceramics. Applied Physics Letters, 2012, 100(13): 132908. |
[77] | YAN Y, CHO K H, MAURYA D, et al. Giant energy density in [001]-textured Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3 piezoelectric ceramics. Applied Physics Letters, 2013, 102(4): 042903. |
[78] | ZATE T T, KIM M, JEON J H. Outstanding unipolar strain of textured Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3 piezoelectric ceramics manufactured by particle size distribution control of the plate-like BaTiO3 template. Sensors and Actuators A: Physical, 2022, 335: 113373. |
[79] | LIU L, YANG B, YANG S, et al. Cu-modified Pb(Mg1/3Nb2/3)O3- PbZrO3-PbTiO3 textured ceramics with enhanced electromechanical properties and improved thermal stability. Journal of the European Ceramic Society, 2022, 42(6): 2743. |
[80] | KIM E J, KIM S W, KIM D S, et al. Piezoelectric properties of [001]-textured high-power PMnN-PZT piezoceramics sintered at a low temperature. Journal of the European Ceramic Society, 2023, 43(5): 1912. |
[81] | YAN Y, GENG L D, LIU H, et al. Near-ideal electromechanical coupling in textured piezoelectric ceramics. Nature Communications, 2022, 13: 3565. |
[82] | DURSUN S, MENSUR-ALKOY E, UNVER M U, et al. Enhancement of electrical properties in the ternary PMN-PT-PZ through compositional variation, crystallographic texture, and quenching. Journal of the American Ceramic Society, 2019, 103(4): 24998. |
[83] | LIU L, YANG B, LV R, et al. Enhanced unipolar electrical fatigue resistance and related mechanism in grain-oriented Pb(Mg1/3Nb2/3)O3-Pb(Zr,Ti)O3 piezoceramics. Journal of Materials Science & Technology, 2023, 145: 40. |
[84] | TANG M, HU L, WU Y, et al. Electromechanical properties of [001]-textured Mn-PMN-PZT ceramics under hydrostatic pressure. Journal of the American Ceramic Society, 2023, 107(2): 1042. |
[85] | ZHANG Y, TANG M, WANG Y, et al. Effect of post-annealing on the electrical properties of textured Pb(Mg1/3Nb2/3)O3-PbZrO3- PbTiO3 piezoelectric ceramics. Ceramics International, 2024, 50(11): 18814. |
[86] | CHANG Y, WU J, SUN Y, et al. Enhanced electromechanical properties and phase transition temperatures in [001] textured Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ternary ceramics. Applied Physics Letters, 2015, 107(8): 082902. |
[87] | DURAN C, DURSUN S, AKÇA E. High strain, <001>-textured Pb(Mg1/3Nb2/3)O3-Pb(Yb1/2Nb1/2)O3-PbTiO3 piezoelectric ceramics. Scripta Materialia, 2016, 113: 14. |
[88] | WEI D, WANG H. Low-temperature sintering and enhanced piezoelectric properties of random and textured PIN-PMN-PT ceramics with Li2CO3. Journal of the American Ceramic Society, 2016, 100(3): 1073. |
[89] | CHANG Y, WATSON B, FANTON M, et al. Enhanced texture evolution and piezoelectric properties in CuO-doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 grain-oriented ceramics. Applied Physics Letters, 2017, 111(23): 232901. |
[90] | DURAN C, CENGIZ S, ECEBAŞ N, et al. Processing and characterization of <001>-textured Pb(Mg1/3Nb2/3)O3- Pb(Yb1/2Nb1/2)O3-PbTiO3 ceramics. Journal of Materials Research, 2017, 32(13): 2471. |
[91] | CHANG Y, WU J, LIU Z, et al. Grain-oriented ferroelectric ceramics with single-crystal-like piezoelectric properties and low texture temperature. ACS Applied Materials & Interfaces, 2020, 12(34): 38415. |
[92] | BROVA M J, WATSON B H, WALTON R L, et al. Templated grain growth of high coercive field CuO-doped textured PYN- PMN-PT ceramics. Journal of the American Ceramic Society, 2020, 103(11): 6149. |
[93] | BROVA M J, WATSON B H, WALTON R L, et al. Relationship between composition and electromechanical properties of CuO-doped textured PYN-PMN-PT ceramics. Journal of the European Ceramic Society, 2021, 41(2): 1230. |
[94] | LENG H, YAN Y, LIU H, et al. Design and development of high- power piezoelectric ceramics through integration of crystallographic texturing and acceptor-doping. Acta Materialia, 2021, 206: 116610. |
[95] | JIA H, LIANG Z, LI Z, et al. Texture technique to simultaneously achieve large electric field induced strain response and ultralow hysteresis in BMT-PMN-PT relaxor ferroelectric ceramics. Scripta Materialia, 2022, 209: 114409. |
[96] | MORIANA A D, ZHANG S. Enhancing electromechanical properties of Pb(Sc1/2Nb1/2)O3-PbZrO3-PbTiO3 piezoelectric ceramics via templated grain growth. Advanced Electronic Materials, 2021, 8(6): 2100919. |
[97] | BIAN L, KOU Q, LIU L, et al. Enhancing the temperature stability of 0.42PNN-0.21PZ-0.37PT ceramics through texture engineering. ACS Applied Materials & Interfaces, 2022, 14(2): 3076. |
[98] | YANG S, QIAO L, WANG J, et al. Full matrix electromechanical properties of textured Pb(In1/2Nb1/2)O3-Pb(Sc1/2Nb1/2)O3-PbTiO3 ceramic. Journal of Applied Physics, 2022, 131(12): 124104. |
[99] | LENG H, YAN Y, WANG B, et al. High performance high-power textured Mn/Cu-doped PIN-PMN-PT ceramics. Acta Materialia, 2022, 234: 118015. |
[100] | LENG H, WANG Y U, YAN Y, et al. Water quenched and acceptor-doped textured piezoelectric ceramics for off-resonance and on-resonance devices. Small, 2022, 19(1): 2204454. |
[101] | LENG H, YAN Y, LI X, et al. High-power piezoelectric behavior of acceptor-doped <001> and <111> textured piezoelectric ceramics. Journal of Materials Chemistry C, 2023, 11(6): 2229. |
[102] | YANG S, TIAN F, LI C, et al. Electromechanical properties of textured PIN-PSN-PT ceramics under uniaxial stress, hydrostatic pressure, and bias electric field. Journal of Applied Physics, 2023, 133(9): 094104. |
[103] | YANG S, ZHANG J, QIU C, et al. Investigation on the planar Poisson’s ratio of <001>-oriented Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3- PbTiO3 ceramics. Journal of the European Ceramic Society, 2024, 44(5): 3058. |
[104] | ZATE T T, KO N R, YU H L, et al. Textured Pb(Mg1/3Nb2/3)O3- Pb(In1/2Nb1/2)O3-PbTiO3 ceramics with enhanced piezoelectric properties and high Curie temperature prepared by low-temperature sintering. Sensors and Actuators A: Physical, 2024, 366: 114929. |
[105] | WANG Q, BIAN L, LI K, et al. Achieving ultrahigh electromechanical properties with high TC in PNN-PZT textured ceramics. Journal of Materials Science & Technology, 2024, 175: 258. |
[106] | FENG X, LI L, XU X, et al. Microstructure evolution and properties of textured, Pb(Zr1/2Ti1/2)O3-Pb(Zn1/3Nb2/3)O3-Pb(Ni1/3Nb2/3)O3 ceramics with plate-like BaZr0.1Ti0.9O3 template. Journal of Alloys and Compounds, 2024, 1002: 175439. |
[107] | BIAN L, WANG Q, HE S, et al. Excellent strain and temperature stability in PNT-PZT multilayer textured ceramics. Journal of the European Ceramic Society, 2024, 44(8): 5048. |
[108] | CHO S W, NA Y H, BAIK J M, et al. Low-temperature sintered 0.5Pb(Ni1/3Nb2/3)O3-0.16PbZrO3-0.34PbTiO3 piezoelectric textured ceramics by Li2CO3 addition. Journal of the American Ceramic Society, 2024, 107(6): 4178. |
[109] | KIM E J, LEE T G, KIM D S, et al. Textured Pb(Zr,Ti)O3- Pb[(Zn,Ni)1/3Nb2/3]O3 multilayer ceramics and their application to piezoelectric actuators. Applied Materials Today, 2020, 20: 100695. |
[110] | ZHANG Z, WANG Z, YANG S, et al. Textured ferroelectric ceramics based 1-3 piezoelectric composite for photoacoustic imaging. Sensors and Actuators A: Physical, 2024, 380: 116030. |
[111] | HAO M, FAN G, CAI W, et al. Texture tolerance to B-site valence mismatch for [001] textured Pb97.5%Ba2.5%[(Zn1/3Nb2/3)(1-x)Tix]O3 transparent ceramics. Ceramics International, 2021, 47(1): 1253. |
[1] | CHEN Xiangjie, LI Ling, LEI Tianfu, WANG Jiajia, WANG Yaojin. Enhanced Piezoelectric Properties of (1-x)(0.8PZT-0.2PZN)-xBZT Ceramics via Phase Boundary and Domain Engineering [J]. Journal of Inorganic Materials, 2025, 40(6): 729-734. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[4] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[5] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[6] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[7] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[8] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[9] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[10] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[11] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[12] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[13] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[14] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
[15] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||