Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (2): 171-178.DOI: 10.15541/jim20230323
Special Issue: 【信息功能】MAX层状材料、MXene及其他二维材料(202409)
• PERSPECTIVE • Previous Articles Next Articles
XU Xiangming(), Husam N ALSHAREEF(
)
Received:
2023-07-17
Revised:
2023-08-13
Published:
2023-08-31
Online:
2023-08-31
Contact:
Husam N ALSHAREEF, professor. E-mail: husam.alshareef@kaust.edu.saAbout author:
XU Xiangming (1989-), male, PhD. E-mail: xiangming.xu@kaust.edu.sa
CLC Number:
XU Xiangming, Husam N ALSHAREEF. Perspective of MXetronics[J]. Journal of Inorganic Materials, 2024, 39(2): 171-178.
Fig. 1 Schematic diagram of MXetronics[2] From properties, synthesis, and processing of MXenes to their applications in macro & micro & nano electronics
Fig. 2 Structure and physical properties of MXenes (a) Lattice structure of representative MXene Ti3C2Tx showing fast electron and ion transport; (b) Breakdown current of Ti3C2Tx compared with the other metals and semiconductors[4]; (c) Semiconductive MXene Sc2CTx with different surface groups (-F, -OH, =O)[5]; (d) Low-temperature properties of Nb2CTx MXene with different surface groups, Nb2CS2 and Nb2CSe2 showing the superconductive transition[6]; (e) Calculated work function of various MXenes with different surface groups[7]; (f) EELS mappings showing MXene with different light response phenomena, which is surface plasmonic effect, including inter-band transition mode, transversal and longitudinal surface plasmons modes[8]
Fig. 4 Normal printing and high-resolution processing of MXenes (a) Various printing technologies to be used for MXene low-resolution patterning, usually above hundreds micrometer scale[16]; (b) MXene thin film processing and high-resolution patterning techniques[1]
Fig. 5 MXene-based micro or nanoelectronic devices and their integration (a) Ti3C2Tx MXene as source/drain/gate contact in 2D nano-electronics[28]; (b) Ti3C2Tx MXene-gate for high-performance GaN high-electron-mobility transistors (HEMTs)[24]; (c) HEMTs MXene-derived MOF as the patternable ionic gate in MoS2 electron-double layer transistor[21]; (d) Partially oxidized Ti3C2Tx as floating gat in flash memory transistor[29]; (e) Ti3C2Tx MXene as the channel in electron-double layer transistor for synaptic devices[30]; (f) Ti3C2Tx MXene-Si Schottky diode array as image sensor[31]
[1] |
NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666.
DOI PMID |
[2] |
XU X, GUO T, LANZA M, et al. Status and prospects of MXene-based nanoelectronic devices. Matter, 2023, 6(3): 800.
DOI URL |
[3] |
NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 2011, 23(37): 4248.
DOI URL |
[4] |
WANG H, YAO Z, ACAUAN L, et al. Toward MXene interconnects. Matter, 2021, 4(5): 1447.
DOI URL |
[5] |
KHAZAEI M, ARAI M, SASAKI T, et al. Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Advanced Functional Materials, 2013, 23(17): 2185.
DOI URL |
[6] |
KAMYSBAYEV V, FILATOV A S, HU H, et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science, 2020, 369(6506): 979.
DOI PMID |
[7] |
LIU Y, XIAO H, GODDARD W A. Schottky-barrier-free contacts with two-dimensional semiconductors by surface-engineered MXenes. Journal of the American Chemical Society, 2016, 138(49): 15853.
PMID |
[8] |
EL-DEMELLAWI J K, LOPATIN S, YIN J, et al. Tunable multipolar surface plasmons in 2D Ti3C2Tx MXene flakes. ACS Nano, 2018, 12(8): 8485.
DOI URL |
[9] |
LIPATOV A, GOAD A, LOES M J, et al. High electrical conductivity and breakdown current density of individual monolayer Ti3C2Tx MXene flakes. Matter, 2021, 4(4): 1413.
DOI URL |
[10] |
LIPATOV A, LOES M J, VOROBEVA N S, et al. High breakdown current density in monolayer Nb4C3Tx MXene. ACS Materials Letters, 2021, 3(8): 1088.
DOI URL |
[11] | HU C, WEI Z, LI L, et al. Strategy toward semiconducting Ti3C2Tx- MXene: phenylsulfonic acid groups modified Ti3C2Tx as photosensitive material for flexible visual sensory-neuromorphic system. Advanced Functional Materials, DOI: 10.1002/adfm.202302188. |
[12] |
HU C, DU Z, WEI Z, et al. Functionalized Ti3C2Tx MXene with layer-dependent band gap for flexible NIR photodetectors. Applied Physics Reviews, 2023, 10: 021402.
DOI URL |
[13] |
LI Y, SHAO H, LIN Z, et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nature Materials, 2020, 19(8): 894.
DOI PMID |
[14] |
WANG D, ZHOU C, FILATOV A S, et al. Direct synthesis and chemical vapor deposition of 2D carbide and nitride MXenes. Science, 2023, 379(6638): 1242.
DOI PMID |
[15] |
WU H, ALMALKI M, XU X, et al. MXene-derived metal-organic frameworks. Journal of the American Chemical Society, 2019, 141(51): 20037.
DOI URL |
[16] |
ZHANG Y Z, WANG Y, JIANG Q, et al. MXene printing and patterned coating for device applications. Advanced Materials, 2020, 32(21): 1908486.
DOI URL |
[17] |
GUO T, XU X, LIU C, et al. Large-area metal-semiconductor heterojunctions realized via MXene-induced two-dimensional surface polarization. ACS Nano, 2023, 17(9): 8324.
DOI URL |
[18] |
WANG Z, KIM H, ALSHAREEF H N. Oxide thin-film electronics using all-MXene electrical contacts. Advanced Materials, 2018, 30(15): 1706656.
DOI URL |
[19] |
KIM H, WANG Z, ALSHAREEF H N. MXetronics: electronic and photonic applications of MXenes. Nano Energy, 2019, 60: 179.
DOI |
[20] |
KIM H, ALSHAREEF H N. MXetronics: MXene-enabled electronic and photonic devices. ACS Materials Letters, 2019, 2(1): 55.
DOI URL |
[21] |
XU X, WU H, HE X, et al. Iontronics using V2CTx MXene- derived metal-organic framework solid electrolytes. ACS Nano, 2020, 14(8): 9840.
DOI URL |
[22] |
KIM H, NUGRAHA M I, GUAN X, et al. All-solution-processed quantum dot electrical double-layer transistors enhanced by surface charges of Ti3C2Tx MXene contacts. ACS Nano, 2021, 15(3): 5221.
DOI URL |
[23] |
XU X, GUO T, HOTA M K, et al. High-yield Ti3C2Tx MXene-MoS2 integrated circuits. Advanced Materials, 2022, 34(48): 2107370.
DOI URL |
[24] |
WANG C, XU X, TYAGI S, et al. Ti3C2Tx MXene van der Waals gate contact for GaN high electron mobility transistors. Advanced Materials, 35: 2211738.
DOI URL |
[25] | XU X, WANG Z, LOPATIN S, et al. Wafer-scale quasi-single crystalline MoS2 realized by epitaxial phase conversion. 2D Materials, 2019, 6(1): 015030. |
[26] |
XU X, DAS G, HE X, et al. High-performance monolayer MoS2 films at the wafer scale by two-step growth. Advanced Functional Materials, 2019, 29(32): 1901070.
DOI URL |
[27] |
XU X, ZHANG C, HOTA M K, et al. Enhanced quality of wafer-scale MoS2 films by a capping layer annealing process. Advanced Functional Materials, 2020, 30(11): 1908040.
DOI URL |
[28] |
XU X, GUO T, KIM H, et al. Growth of 2D Materials at the wafer scale. Advanced Materials, 2022, 34(14): 2108258.
DOI URL |
[29] |
LYU B, CHOI Y, JING H, et al. 2D MXene-TiO2 core-shell nanosheets as a data-storage medium in memory devices. Advanced Materials, 2020, 32(17): 1907633.
DOI URL |
[30] |
MELIANAS A, KANG M A, VAHIDMOHAMMADI A, et al. High-speed ionic synaptic memory based on 2D titanium carbide MXene. Advanced Functional Materials, 2022, 32(12): 2109970.
DOI URL |
[31] |
LI B, ZHU Q B, CUI C, et al. Patterning of wafer-scale MXene films for high-performance image sensor arrays. Advanced Materials, 2022, 34(17): 2201298.
DOI URL |
[1] | BAO Ke, LI Xijun. Chemical Vapor Deposition of Vanadium Dioxide for Thermochromic Smart Window Applications [J]. Journal of Inorganic Materials, 2024, 39(3): 233-258. |
[2] | LIU Song, ZHANG Faqiang, LUO Jin, LIU Zhifu. 0.9BaTiO3-0.1Bi(Mg1/2Ti1/2)O3 Ferroelectric Thin Films: Preparation and Energy Storage [J]. Journal of Inorganic Materials, 2024, 39(3): 291-298. |
[3] | LI Lei, CHENG Qunfeng. Recent Advances in the High Performance MXenes Nanocomposites [J]. Journal of Inorganic Materials, 2024, 39(2): 153-161. |
[4] | LI La, SHEN Guozhen. 2D MXenes Based Flexible Photodetectors: Progress and Prospects [J]. Journal of Inorganic Materials, 2024, 39(2): 186-194. |
[5] | BA Kun, WANG Jianlu, HAN Meikang. Perspectives for Infrared Properties and Applications of MXene [J]. Journal of Inorganic Materials, 2024, 39(2): 162-170. |
[6] | YIN Jianyu, LIU Nishuang, GAO Yihua. Recent Progress of MXene in Pressure Sensing [J]. Journal of Inorganic Materials, 2024, 39(2): 179-185. |
[7] | LIU Yanyan, XIE Xi, LIU Zengqian, ZHANG Zhefeng. Metal Matrix Composites Reinforced by MAX Phase Ceramics: Fabrication, Properties and Bioinspired Designs [J]. Journal of Inorganic Materials, 2024, 39(2): 145-152. |
[8] | DENG Shungui, ZHANG Chuanfang. MXene Multifunctional Inks: a New Perspective toward Printable Energy-related Electronic Devices [J]. Journal of Inorganic Materials, 2024, 39(2): 195-203. |
[9] | CHEN Ze, ZHI Chunyi. MXene Based Zinc Ion Batteries: Recent Development and Prospects [J]. Journal of Inorganic Materials, 2024, 39(2): 204-214. |
[10] | DING Haoming, CHEN Ke, LI Mian, LI Youbing, CHAI Zhifang, HUANG Qing. Chemical Scissor-mediated Structural Editing of Inorganic Materials [J]. Journal of Inorganic Materials, 2024, 39(2): 115-128. |
[11] | WAN Hujie, XIAO Xu. Terahertz Electromagnetic Shielding and Absorbing of MXenes and Their Composites [J]. Journal of Inorganic Materials, 2024, 39(2): 129-144. |
[12] | FEI Ling, LEI Lei, WANG Degao. Progress of Two-dimensional MXene in New-type Thin-film Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(2): 215-224. |
[13] | TAO Shunyan, YANG Jiasheng, SHAO Fang, WU Yingchen, ZHAO Huayu, DONG Shaoming, ZHANG Xiangyu, XIONG Ying. Thermal Spray Coatings for Aircraft CMC Hot-end Components: Opportunities and Challenges [J]. Journal of Inorganic Materials, 2024, 39(10): 1077-1083. |
[14] | ZHENG Jiaqian, LU Xiao, LU Yajie, WANG Yingjun, WANG Zhen, LU Jianxi. Functional Bioadaptability in Medical Bioceramics: Biological Mechanism and Application [J]. Journal of Inorganic Materials, 2024, 39(1): 1-16. |
[15] | HU Ying, LI Ziqing, FANG Xiaosheng. Solution-prepared AgBi2I7 Thin Films and Their Photodetecting Properties [J]. Journal of Inorganic Materials, 2023, 38(9): 1055-1061. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||