Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (4): 387-393.DOI: 10.15541/jim20180263
Previous Articles Next Articles
Ren-De CHEN1,Peng GUO1,Xiao ZUO1,Shi-Peng XU2,Pei-Ling KE1,3,Ai-Ying WANG1,3()
Received:
2018-06-19
Revised:
2018-09-25
Published:
2019-04-20
Online:
2019-04-15
Supported by:
CLC Number:
Ren-De CHEN, Peng GUO, Xiao ZUO, Shi-Peng XU, Pei-Ling KE, Ai-Ying WANG. Ag Doped Amorphous Carbon Films: Structure, Mechanical and Electrical Behaviors[J]. Journal of Inorganic Materials, 2019, 34(4): 387-393.
Sputtering current /A | Sputtering power /W | Ag concentration /at% | O concentration /at% | Thickness /nm | Deposition rate /(nm?min-1) |
---|---|---|---|---|---|
1.3 | 582 | 0.7 | 30.2 | 364.5 | 18.2 |
1.4 | 602 | 0.8 | 26.5 | 358.3 | 17.9 |
1.5 | 647 | 1.2 | 27.2 | 508.5 | 25.4 |
1.6 | 859 | 13.0 | 45.2 | 725.4 | 36.3 |
1.8 | 788 | 37.8 | 32.9 | 1409.1 | 70.5 |
2.0 | 856 | 41.4 | 32.2 | 1720.4 | 86.0 |
Table 1 Ag concentration, O concentration, film thickness and average deposition rate varied with sputtering current and power
Sputtering current /A | Sputtering power /W | Ag concentration /at% | O concentration /at% | Thickness /nm | Deposition rate /(nm?min-1) |
---|---|---|---|---|---|
1.3 | 582 | 0.7 | 30.2 | 364.5 | 18.2 |
1.4 | 602 | 0.8 | 26.5 | 358.3 | 17.9 |
1.5 | 647 | 1.2 | 27.2 | 508.5 | 25.4 |
1.6 | 859 | 13.0 | 45.2 | 725.4 | 36.3 |
1.8 | 788 | 37.8 | 32.9 | 1409.1 | 70.5 |
2.0 | 856 | 41.4 | 32.2 | 1720.4 | 86.0 |
Ag concentration /at% | G-peak position/cm-1 | ID/IG | FWHM of G-peak/cm-1 |
---|---|---|---|
0.7 | 1533.0 | 0.75 | 159.4 |
0.8 | 1535.9 | 0.79 | 151.6 |
1.2 | 1539.8 | 0.85 | 151.4 |
13.0 | 1582.5 | 1.94 | 122.5 |
37.8 | 1566.4 | 2.15 | 123.6 |
41.4 | 1580.7 | 2.68 | 110.0 |
Table 2 The fitted G-peak position, ID/IG and FWHM of G-peak varied with different Ag concentrations
Ag concentration /at% | G-peak position/cm-1 | ID/IG | FWHM of G-peak/cm-1 |
---|---|---|---|
0.7 | 1533.0 | 0.75 | 159.4 |
0.8 | 1535.9 | 0.79 | 151.6 |
1.2 | 1539.8 | 0.85 | 151.4 |
13.0 | 1582.5 | 1.94 | 122.5 |
37.8 | 1566.4 | 2.15 | 123.6 |
41.4 | 1580.7 | 2.68 | 110.0 |
Fig. 5 Surface topographies of a-C:Ag films with different Ag concentrations (a) 0.7at%; (b) 0.8at%; (c) 1.2at%; (d) 13.0at%; (e) 37.8at%; (f) 41.4at%
Fig. 8 Temperature dependence of resistivity in a-C:Ag film with 37.8at% Ag in the range of 8~400 K (a) and the a-C:Ag with 41.4at% Ag in the range of 2~400 K (b)
[1] | 薛群基, 王立平 . 类金刚石碳基薄膜材料. 北京: 科学出版社, 2012. |
[2] | ROBERTSON J . Diamond-like amorphous carbon. Mater. Sci. Eng.B, 2002,37(4/5/6):129-281. |
[3] | DAI W . Research on the synthesis, structure and properties of metal doped diamond-like carbon nanocomposite films. New Technology & New Process, 2015,7:128-131. |
[4] | ZHANG S, WU Y, ZHU L , et al. Research progress of metal doped diamond-like carbon films. Aeronautical Manufacturing Technology, 2017,13:77-82. |
[5] | TAMULEVICIUS S, MESKINIS S, TAMULEVICIUS T , et al. Diamond like carbon nanocomposites with embedded metallic nanoparticles. Rep. Prog. Phys., 2018, 81(2): 024501-1-31. |
[6] | PU J, WANG L, XUE Q . Progress in strengthening and toughening carbon-based films. China Surface Engineering, 2014,27(6):4-27. |
[7] | WU Y, CHEN J, LI H , et al. Preparation and properties of Ag/DLC nanocomposite films fabricated by unbalanced magnetron sputtering. Appl. Surf.Sci, 2013,284:165-170. |
[8] | MAZARE A, ANGHEL A, SURDU-BOB C , et al. Silver doped diamond-like carbon antibacterial and corrosion resistance coatings on titanium. Thin Solid Films, 2018,657:16-23. |
[9] | CONSTANTINOU M, PERVOLARAKI M, NIKOLAOU P , et al. Microstructure and nanomechanical properties of pulsed excimer laser deposited DLC:Ag films: enhanced nanotribological response. Surf. Coat. Technol, 2017,309:320-330. |
[10] | DWIVEDI N, KUMAR S, CAREY J D , et al. Influence of silver incorporation on the structural and electrical properties of diamond-like carbon thin films. ACS Appl Mater Interfaces, 2013,5:2725-2732. |
[11] | MEŠKINIS Š, VASILIAUSKAS A, ŠLAPIKAS K , et al. Bias effects on structure and piezoresistive properties of DLC:Ag thin films. Surf. Coat. Technol., 2014,255:84-89. |
[12] | PEINER E, TIBREWALA A, BANDORF R , et al. Diamond-like carbon for MEMS.[J]. Micromech. Microeng., 2007,17(7):S83-S90. |
[13] | CHUA D H C, MILNE W I, SHEEJA D , et al. Fabrication of diamond- like amorphous carbon cantilever resonators. J. Vac. Sci. Technol. B, 2004,22(6):2680-2684. |
[14] | SARSEMBINOV S S, PRIKHODKO O Y, RYAGUZOV A P , et al. Electronic properties of diamond-like carbon films modified by silver nanoclusters. Phys. Status Solidi C, 2009,7:805-807. |
[15] | ABDOLGHADERI S, ASTINCHAP B, SHAFIEKHANI A . Electrical percolation threshold in Ag-DLC nanocomposite films prepared by RF-sputtering and RF-PECVD in acetylene plasma. J Mater Sci: Mater Electron, 2016,27(7):6713-6720. |
[16] | MUSIL J, LOUDA M, SOUKUP Z , et al. Relationship between mechanical properties and coefficient of friction of sputtered a-C/Cu composite thin films. Diamond Relat. Mater., 2008,17(11):1905-1911. |
[17] | MATSUNAMI N, YAMAMURA Y, ITIKAWA Y , et al. Energy dependence of the ion-induced sputtering yields of monatomic solids. At. Data Nucl.Data Tables, 1984,31:1-80. |
[18] | SMENTKOWSKI V S . Trends in sputtering. Prog. Surf. Sci., 2000,64:1-58. |
[19] | TAKI T, TAKAI O . XPS structural characterization of hydrogenated amorphous carbon thin films prepared by shielded arc ion plating. Thin Solid Films, 1998,316:45-50. |
[20] | KIM H W, LEE N E . Conformal electroless filling of Cu into patterned amorphous carbon layer modified by oxygen plasma and aminosilane treatments. J. Vac. Sci. Technol.B, 2010,28(4):715-719. |
[21] | WARREN B E . X-ray diffraction, New edition, US: Dover Publications, 1990. |
[22] | FERRARI A C, ROBERTSON J . Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev.B, 2000,61(20):14095-14107. |
[23] | FERRARI A C, ROBERTSON J . Resonant Raman spectroscopy of disordered,amorphous,diamondlike carbon. Phys. Rev. B, 2001, 64(7): 075414-1-13. |
[24] | CASIRAGHI C, FERRARI A C, ROBERTSON J. Raman spectroscopy of hydrogenated amorphous carbon. Phys. Rev. B, 2005, 72: 085401-1-14. |
[25] | ZOU C W, WANG H J, FENG L , et al. Effects of Cr concentrations on the microstructure, hardness, and temperature-dependent tribological properties of Cr-DLC coatings. Appl. Surf. Sci., 2013,286:137-141. |
[26] | DAI W, KE P, MOON M W , et al. Investigation of the microstructure, mechanical properties and tribological behaviors of Ti- containing diamond-like carbon films fabricated by a hybrid ion beam method. Thin Solid Films, 2012,520(19):6057-6063. |
[27] | QUAN J, ZHANG J, QI X , et al. A study on the correlation between the dewetting temperature of Ag film and SERS intensity. Sci. Rep., 2017,7(1):14771-14782. |
[28] | GUO P, SUN L, LI X , et al. Structural properties and surface wettability of Cu-containing diamond-like carbon films prepared by a hybrid linear ion beam deposition technique. Thin Solid Films, 2015,584:289-293. |
[29] | SINGH V, JIANG J C, MELETIS E I . Cr-diamondlike carbon nanocomposite films: synthesis, characterization and properties. Thin Solid Films, 2005,489(1/2):150-158. |
[30] | SONODA T, NAKAO S, IKEYAMA M . Deposition of Ti/C nano-composite DLC films by magnetron DC sputtering with dual targets. Vacuum, 2009,84(5):666-668. |
[31] | WANG A Y, LEE K R, AHN J P , et al. Structure and mechanical properties of W incorporated diamond-like carbon films prepared by a hybrid ion beam deposition technique. Carbon, 2006,44(9):1826-1832. |
[32] | GUO P, LI X, SUN L , et al. Stress reduction mechanism of diamond- like carbon films incorporated with different Cu contents. Thin Solid Films, 2017,640:45-51. |
[33] | DONNET C, ERDEMIR A . Tribology of Diamond-like Carbon Films. US: Springer, 2008. |
[34] | WAN C, ZHANG X, VANACKEN J , et al. Electro- and magneto- transport properties of amorphous carbon films doped with iron. Diamond Relat. Mater., 2011,20(1):26-30. |
[35] | TAKENO T, MIKI H, TAKAGI T , et al. Electrically conductive properties of tungsten-containing diamond-like carbon films. Diamond Relat. Mater., 2006,15(11/12):1902-1905. |
[36] | HUANG Q F, YOON S F, RUS LI , et al. Conduction mechanism in molybdenum-containing diamond-like carbon deposited using electron cyclotron resonance chemical vapor deposition.[J]. Appl. Phys., 2000,88(7):4191-4195. |
[1] | FAN Wugang, CAO Xiong, ZHOU Xiang, LI Ling, ZHAO Guannan, ZHANG Zhaoquan. Anticorrosion Performance of 8YSZ Ceramics in Simulated Aqueous Environment of Pressurized Water Reactor [J]. Journal of Inorganic Materials, 2024, 39(7): 803-809. |
[2] | WU Yuhao, PENG Renci, CHENG Chunyu, YANG Li, ZHOU Yichun. First-principles Study on Mechanical Properties and Melting Curve of HfxTa1-xC System [J]. Journal of Inorganic Materials, 2024, 39(7): 761-768. |
[3] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[4] | SUN Haiyang, JI Wei, WANG Weimin, FU Zhengyi. Design, Fabrication and Properties of Periodic Ordered Structural Composites with TiB-Ti Units [J]. Journal of Inorganic Materials, 2024, 39(6): 662-670. |
[5] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[6] | LIU Guoang, WANG Hailong, FANG Cheng, HUANG Feilong, YANG Huan. Effect of B4C Content on Mechanical Properties and Oxidation Resistance of (Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 697-706. |
[7] | SU Yi, SHI Yangfan, JIA Chenglan, CHI Pengtao, GAO Yang, MA Qingsong, CHEN Sian. Microstructure and Properties of C/HfC-SiC Composites Prepared by Slurry Impregnation Assisted Precursor Infiltration Pyrolysis [J]. Journal of Inorganic Materials, 2024, 39(6): 726-732. |
[8] | ZHANG Rui, ZHANG Kan, YUAN Mengya, GU Xinlei, ZHENG Weitao. Nitrogen Vacancy Regulated Lattice Distortion on Improvement of (NbMoTaW)Nx Thin Films: Mechanical Properties and Wear Resistance [J]. Journal of Inorganic Materials, 2024, 39(6): 715-725. |
[9] | ZHANG Yuchen, LU Zhiyao, HE Xiaodong, SONG Guangping, ZHU Chuncheng, ZHENG Yongting, BAI Yuelei. Predictions of Phase Stability and Properties of S-group Elements Containing MAX Borides [J]. Journal of Inorganic Materials, 2024, 39(2): 225-232. |
[10] | LI Lei, CHENG Qunfeng. Recent Advances in the High Performance MXenes Nanocomposites [J]. Journal of Inorganic Materials, 2024, 39(2): 153-161. |
[11] | LIU Yanyan, XIE Xi, LIU Zengqian, ZHANG Zhefeng. Metal Matrix Composites Reinforced by MAX Phase Ceramics: Fabrication, Properties and Bioinspired Designs [J]. Journal of Inorganic Materials, 2024, 39(2): 145-152. |
[12] | WANG Bo, CAI Delong, ZHU Qishuai, LI Daxin, YANG Zhihua, DUAN Xiaoming, LI Yanan, WANG Xuan, JIA Dechang, ZHOU Yu. Mechanical Properties and Thermal Shock Resistance of SrAl2Si2O8 Reinforced BN Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(10): 1182-1188. |
[13] | YANG Pingjun, LI Tiehu, LI Hao, DANG Alei. Effect of Graphene on Graphitization, Electrical and Mechanical Properties of Epoxy Resin Carbon Foam [J]. Journal of Inorganic Materials, 2024, 39(1): 107-112. |
[14] | NI Xiaoshi, LIN Ziyang, QIN Muyan, YE Song, WANG Deping. Bioactivity and Mechanical Property of PMMA Bone Cement: Effect of Silanized Mesoporous Borosilicate Bioglass Microspheres [J]. Journal of Inorganic Materials, 2023, 38(8): 971-977. |
[15] | XIE Jiaye, LI Liwen, ZHU Qiang. Contrastive Study on in Vitro Antibacterial Property and Biocompatibility of Three Clinical Pulp Capping Agents [J]. Journal of Inorganic Materials, 2023, 38(12): 1449-1456. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||