Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (3): 260-268.DOI: 10.15541/jim20180320
Special Issue: 热电材料与器件; 优秀作者论文集锦; 优秀作者作品欣赏:能源材料
Previous Articles Next Articles
SHEN Jia-Jun, FANG Teng, FU Tie-Zheng, XIN Jia-Zhan, ZHAO Xin-Bing, ZHU Tie-Jun
Received:
2018-07-16
Revised:
2018-09-03
Published:
2019-03-20
Online:
2019-02-26
Supported by:
CLC Number:
SHEN Jia-Jun, FANG Teng, FU Tie-Zheng, XIN Jia-Zhan, ZHAO Xin-Bing, ZHU Tie-Jun. Lattice Thermal Conductivity in Thermoelectric Materials[J]. Journal of Inorganic Materials, 2019, 34(3): 260-268.
Fig.1 (a) Temperature dependence of the lattice thermal conductivity for Cu2-xSe[11] and (b) number of atoms in the primitive unit cell versus room temperature lattice thermal conductivity[12,13,14,15,16]
Fig. 2 (a) Schematic diagram of crystal structure for Ba8Ga16Ge30, (b) a simple spring model and (c) the corresponding dispersion relation of filled and unfilled clathrate[29]describing interaction between the host cages with a spring constant K1 and the guest atoms attached to the cages with a spring constant K2
Fig.4 (a) Phonon frequency dependence of spectral lattice thermal conductivity for (Nb0.6Ta0.4)0.8Ti0.2FeSb and Nb0.8Ti0.2FeSb, and (b) relationship between Ta content and lattice thermal conductivity/disorder parameter for (Nb0.6Ta0.4)0.8Ti0.2FeSb[70]
Fig. 5 (a) Inverse FFT images and strain mapping of dislocations in the Mg2Si0.5Sb0.5, and (b) lattice thermal conductivity comparison between Mg2Si1-xSbx and Mg2Si1-zSnz at room temperature[84]
Fig. 7 (a) Schematic diagram of electron-phonon scattering and (b) comparison of experimental and calculated lattice thermal conductivities by Callaway Model for the silicon sample[93]
Fig. 8 (a) Schematic diagram of the difference between diffusion model and phonon model, and (b) comparison of calculated minimum lattice thermal conductivities by Cahill model and diffuson model
[1] | BELL L E.Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008, 321(5895): 1457-1461. |
[2] | SNYDER G J, TOBERER E S.Complex thermoelectric materials. Nature Materials, 2008, 7:101-110. |
[3] | XIN J Z, TANG Y L, LIU Y T, et al.Valleytronics in thermoelectric materials. npj Quantum Materials, 2018, 3(1): 9. |
[4] | LI W, ZHENG L L, GE B H, et al. Promoting SnTe as an eco-friendly solution for p-PbTe thermoelectric via band convergence and interstitial defects. Advanced Materials, 2017, 29(17): 1605887-1-8. |
[5] | BISWAS K, HE J Q, BLUM I D, et al.High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 2012, 489: 414-418. |
[6] | ZHAO L D, LO S H, ZHANG Y S, et al.Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 2014, 508: 373-377. |
[7] | CHEN Z W, JIAN Z Z, LI W,et al. Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence. Advanced Materials, 2017, 29(23): 1606768-1-8. |
[8] | KIM S I, LEE K H, MUN H A, et al.Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science, 2015, 348(6230): 109-114. |
[9] | CHEN Z W, ZHANG X Y, PEI Y Z. Manipulation of phonon transport in thermoelectrics. Advanced Materials, 2018, 30(17): 1705617-1-12. |
[10] | HE Y, DAY T, ZHANG T S, et al.High thermoelectric performance in non-toxic earth-abundant copper sulfide. Advanced Materials, 2014, 26(23): 3974-3978. |
[11] | LIU H L, SHI X, XU F F, et al.Copper ion liquid-like thermoelectrics. Nature Materials, 2012, 11: 422-425. |
[12] | VINING C B, LASKOW W, HANSON J O, et al.Thermoelectric properties of pressure-sintered Si0.8Ge0.2 thermoelectric alloys. Journal of Applied Physics, 1991, 69(8): 4333-4340. |
[13] | PEI Y Z, LALONDE A, IWANAGA S, et al.High thermoelectric figure of merit in heavy hole dominated PbTe. Energy & Environmental Science, 2011, 4(6): 2085-2089. |
[14] | ZEVALKINK A, TOBERER E S, ZEIER W G., et al.Ca3AlSb3: an inexpensive, non-toxic thermoelectric material for waste heat recovery. Energy & Environmental Science, 2011, 4(2): 510-518. |
[15] | MAY A F, TOBERER E S, SARAMAT A, et al. Characterization and analysis of thermoelectric transport in n-type Ba8Ga16-xGe30+x. Physical Review B, 2009, 80(12): 125205-1-12. |
[16] | COX C A, TOBERER E S, LEVCHENKO A A, et al.Structure, heat capacity, and high-temperature thermal properties of Yb14Mn1-xAlxSb11. Chemistry of Materials, 2009, 21(7): 1354-1360. |
[17] | SLACK G A.The thermal conductivity of nonmetallic crystals. Solid State Physics, 1979, 34: 1-71. |
[18] | TOBERER E S, ZEVALKINK A, SNYDER G J.Phonon engineering through crystal chemistry. Journal of Materials Chemistry, 2011, 21(40): 15843-15852. |
[19] | WANG Y, HU Y J, FIRDOSY S A, et al. First-principles calculations of lattice dynamics and thermodynamic properties for Yb14MnSb11. Journal of Applied Physics, 2018, 123(4): 045102-1-10. |
[20] | BROWN S R, KAUZLARICH S M, GASCOIN F, et al.Yb14MnSb11: new high efficiency thermoelectric material for power generation. Chemistry of Materials, 2006, 18(7): 1873-1877. |
[21] | CHEN Z, LI D C, DENG S P, et al.Thermoelectric properties and thermal stability of Bi-doped PbTe single crystal. Physica B: Condensed Matter, 2018, 538: 154-159. |
[22] | YING P J, LI X, WANG Y C, et al. Hierarchical chemical bonds contributing to the intrinsically low thermal conductivity in α-MgAgSb thermoelectric materials. Advanced Functional Materials, 2016, 27(1): 1604145-1-8. |
[23] | LI J Q, LI L F, SONG S H, et al.High thermoelectric performance of GeTe-Ag8GeTe6 eutectic composites. Journal of Alloys and Compounds, 2013, 565: 144-147. |
[24] | FUJIKANE M, KUROSAKI K, MUTA H, et al.Thermoelectric properties of Ag8GeTe6. Journal of Alloys and Compounds, 2005, 396(1): 280-282. |
[25] | HOU Y H, CHANG L S.Optimization on the figure-of-merit of p-type Ba8Ga16Ge30 type-I clathrate grown via the Bridgman method by fine tuning Ga/Ge ratio. Journal of Alloys and Compounds, 2018, 736: 108-114. |
[26] | YAN X L, IKEDA M, ZHANG L, et al.Suppression of vacancies boosts thermoelectric performance in type-I clathrates. Journal of Materials Chemistry A, 2018, 6(4): 1727-1735. |
[27] | BEEKMAN M, VANDERGRAAFF A.High-temperature thermal conductivity of thermoelectric clathrates. Journal of Applied Physics, 2017, 121(20): 205105. |
[28] | GONZALEZ-ROMERO R L, ANTONELLI A. Estimating carrier relaxation times in the Ba8Ga16Ge30 clathrate in the extrinsic regime. Physical Chemistry Chemical Physics, 2017, 19(4): 3010-3018. |
[29] | CHRISTENSEN M, ABRAHAMSEN A B, CHRISTENSEN N B, et al.Avoided crossing of rattler modes in thermoelectric materials. Nature Materials, 2008, 7: 811-815. |
[30] | CALLAWAY J.Model for lattice thermal conductivity at low temperatures. Physical Review, 1959, 113(4): 1046-1051. |
[31] | CHUNG J D, MCGAUGHEY A J H, KAVIANY M. Role of phonon dispersion in lattice thermal conductivity modeling. Journal of Heat Transfer, 2004, 126(3): 376-380. |
[32] | SLACK G A, GALGINAITIS S.Thermal conductivity and phonon scattering by magnetic impurities in CdTe. Physical Review, 1964, 133(1A): A253-A268. |
[33] | HEREMANS J P.Thermoelectric materials: the anharmonicity blacksmith. Nature Physics, 2015, 11: 990-991. |
[34] | QIU W J, XI L L, WEI P, et al.Part-crystalline part-liquid state and rattling-like thermal damping in materials with chemical-bond hierarchy. Proceedings of the National Academy of Sciences, 2014, 111(42): 15031-15035. |
[35] | TYAGI K, GAHTORI B, BATHULA S, et al.Thermoelectric properties of Cu3SbSe3 with intrinsically ultralow lattice thermal conductivity. Journal of Materials Chemistry A, 2014,2(38): 15829-15835. |
[36] | DELAIRE O, MA J, MARTY K, et al.Giant anharmonic phonon scattering in PbTe. Nature Materials, 2011, 10: 614-619. |
[37] | LEE S, ESFARJANI K, LUO T F, et al.Resonant bonding leads to low lattice thermal conductivity. Nature Communications, 2014, 5: 3525-1-8. |
[38] | MURPHY R M, MURRAY ÉD, FAHY S, et al. Ferroelectric phase transition and the lattice thermal conductivity of Pb1-xGexTe alloys. Physical Review B, 2017, 95(14): 144302-1-8. |
[39] | CHEN Y, HE B, ZHU T J, et al.Thermoelectric properties of non-stoichiometric AgSbTe2 based alloys with a small amount of GeTe addition. Journal of Physics D: Applied Physics, 2012, 45(11): 115302. |
[40] | ZHANG Y, KE X Z, CHEN C F, et al. Thermodynamic properties of PbTe, PbSe,PbS: first-principles study. Physical Review B, 2009, 80(2): 024304-1-12. |
[41] | MILLER A J, SAUNDERS G A, YOGURTCU Y K.Pressure dependences of the elastic constants of PbTe, SnTe and Ge0.08Sn0.92Te. Journal of Physics C: Solid State Physics, 1981, 14(11): 1569-1584. |
[42] | ALEXANDER F Z, VOLKER L D, RALF P S, et al.Ab initio lattice dynamics and thermochemistry of layered bismuth telluride (Bi2Te3). Journal of Physics: Condensed Matter, 2016, 28(11): 115401-1-7. |
[43] | RINCÓN C, VALERI-GIL M L, WASIM S M. Room-temperature thermal conductivity and grüneisen parameter of the I-III-VI2 chalcopyrite compounds. Physica Status Solidi (A), 1995, 147(2): 409-415. |
[44] | WANG H F, JIN H, CHU W G, et al.Thermodynamic properties of Mg2Si and Mg2Ge investigated by first principles method. Journal of Alloys and Compounds, 2010, 499(1): 68-74. |
[45] | BERNSTEIN N, FELDMAN J L, SINGH D J. Calculations of dynamical properties of skutterudites: thermal conductivity, thermal expansivity,atomic mean-square displacement. Physical Review B, 2010, 81(13): 134301-1-11. |
[46] | BHASKAR A, PAI Y H, WU W M, et al.Low thermal conductivity and enhanced thermoelectric performance of nanostructured Al-doped ZnTe. Ceramics International, 2016,42(1, Part B): 1070-1076. |
[47] | KATRE A, TOGO A, TANAKA I, et al. First principles study of thermal conductivity cross-over in nanostructured zinc-chalcogenides.Journal of Applied Physics, 2015, 117(4): 045102-1-6. |
[48] | NUNES O A C. Piezoelectric surface acoustical phonon amplification in graphene on a GaAs substrate. Journal of Applied Physics, 2014, 115(23): 233715-1-7. |
[49] | REEBER R R.Thermal expansion of some group IV elements and ZnS. Physica Status Solidi (a), 1975, 32(1): 321-331. |
[50] | QIN L, TEO K L, SHEN Z X, et al. Raman scattering of Ge/Si dot superlattices under hydrostatic pressure. Physical Review B, 2001, 64(7): 075312-1-5. |
[51] | SILPAWILAWAN W, KUROSAKI K, OHISHI Y, et al.FeNbSb p-type half-Heusler compound: beneficial thermomechanical properties and high-temperature stability for thermoelectrics. Journal of Materials Chemistry C, 2017, 5(27): 6677-6681. |
[52] | BOSONI E, SOSSO G C, BERNASCONI M.Grüneisen parameters and thermal conductivity in the phase change compound GeTe. Journal of Computational Electronics,2017, 16(4): 997-1002. |
[53] | LI W, LIN S, GE B, et al. Low sound velocity contributing to the high thermoelectric performance of Ag8SnSe6. Advanced Science, 2016, 3 (11): 1600196-1-7. |
[54] | CALLAWAY J, VON B, HANS C.Effect of point imperfections on lattice thermal conductivity. Physical Review, 1960, 120(4): 1149-1154. |
[55] | HAO F, QIU P F, TANG Y S, et al.High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 ℃. Energy & Environmental Science, 2016, 9(10): 3120-3127. |
[56] | HU L P, ZHU T J, LIU X H, et al.Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials. Advanced Functional Materials, 2014, 24(33): 5211-5218. |
[57] | PEI Y Z, SHI X Y, LALONDA A, et al.Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 2011, 473(7345): 66-69. |
[58] | QIN Y T, QIU P F, SHI X, et al.Thermoelectric properties for CuInTe2-xSx(x = 0, 0.05, 0.1, 0.15) solid solution. Journal of Inorganic Materials, 2017, 32(11): 1171-1176. |
[59] | JIANG G Y, HE J, ZHU T J, et al.High performance Mg2(Si,Sn) solid solutions: a point defect chemistry approach to enhancing thermoelectric properties. Advanced Functional Materials, 2014, 24(24): 3776-3781. |
[60] | LIU X H, ZHU T J, WANG H, et al.Low electron scattering potentials in high performance Mg2Si0.45Sn0.55 based thermoelectric solid solutions with band convergence. Advanced Energy Materials, 2013, 3(9): 1238-1244. |
[61] | TRIPATHI M N, BHANDARI C M.High-temperature thermoelectric performance of Si-Ge alloys. Journal of Physics: Condensed Matter, 2003, 15(31): 5359-5370. |
[62] | FU C G, ZHU T J, PEI Y Z, et al. High band degeneracy contributes to high thermoelectric performance in p-type half-Heusler compounds. Advanced Energy Materials, 2014, 4(18): 1400600-1-6. |
[63] | YU J J, XIA K Y, ZHAO X B, et al.High performance p-type half-Heusler thermoelectric materials. Journal of Physics D: Applied Physics, 2018, 51(11): 113001. |
[64] | SHEN J J, FU C G, LIU Y T, et al.Enhancing thermoelectric performance of FeNbSb half-Heusler compound by Hf-Ti dual-doping. Energy Storage Materials, 2018, 10: 69-74. |
[65] | ZHU T J, LIU Y T, FU C G, et al. Compromise and synergy in high-efficiency thermoelectric materials. Advanced Materials, 2017, 29(14): 1605884-1-26. |
[66] | FU C G, WU H J, LIU Y T, et al. Enhancing the figure of merit of heavy-band thermoelectric materials through hierarchical phonon scattering. Advanced Science, 2016, 3(8): 1600035-1-6. |
[67] | ZHU T J, FU C G, XIE H H, et al. High efficiency half-Heusler thermoelectric materials for energy harvesting. Advanced Energy Materials, 2015, 5(19): 1500588-1-7. |
[68] | FU C G, BAI S Q, LIU Y T, et al.Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials. Nat. Commun., 2015, 6: 8144. |
[69] | XIE H H, WANG H, PEI Y Z, et al.Beneficial contribution of alloy disorder to electron and phonon transport in half-heusler thermoelectric materials. Advanced Functional Materials, 2013, 23(41): 5123-5130. |
[70] | YU J J, FU C G, LIU Y T, et al. Unique role of refractory ta alloying in enhancing the figure of merit of NbFeSb thermoelectric materials. Advanced Energy Materials, 2018, 8(1): 1701313-1-8. |
[71] | XIA K Y, LIU Y T, ANAND S, et al. Enhanced thermoelectric performance in 18-electron Nb0.8CoSb half-heusler compound with intrinsic Nb vacancies. Advanced Functional Materials, 2018, 28(9): 1705845-1-7. |
[72] | LI W, LIN S Q, ZHANG X Y, et al.Thermoelectric properties of Cu2SnSe4 with intrinsic vacancy. Chemistry of Materials, 2016, 28(17): 6227-6232. |
[73] | KLEMENS P G.The scattering of low-frequency lattice waves by static imperfections. Proceedings of the Physical Society. Section A, 1955, 68(12): 1113-1128. |
[74] | ZHANG S N, HE J, JI X H, et al.Effects of ball-milling atmosphere on the thermoelectric properties of TAGS-85 compounds. Journal of Electronic Materials, 2009, 38(7): 1142-1147. |
[75] | LI Y, MEI D Q, WANG H, et al.Reduced lattice thermal conductivity in nanograined Na-doped PbTe alloys by ball milling and semisolid powder processing. Materials Letters, 2015, 140: 103-106. |
[76] | HONG M, CHEN Z G, ZOU J. Fundamental and progress of Bi2Te3-based thermoelectric materials. Chinese Physics B, 2018, 27(4): 048403-1-46. |
[77] | XIE J, OHISHI Y, ICHIKAWA S, et al. Naturally decorated dislocations capable of enhancing multiple-phonon scattering in Si-based thermoelectric composites. Journal of Applied Physics, 2018, 123(11): 115114-1-8. |
[78] | YU Y, HE D S, ZHANG S Y, et al.Simultaneous optimization of electrical and thermal transport properties of Bi0.5Sb1.5Te3 thermoelectric alloy by twin boundary engineering. Nano Energy, 2017, 37: 203-213. |
[79] | XIE W J, HE J, KANG H J, et al.Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi,Sb)2Te3 nanocomposites. Nano Letters, 2010, 10(9): 3283-3289. |
[80] | YANG X Y, WU J H, REN D D, et al.Microstructure and thermoelectric properties of p-type Si80Ge20B0.6-SiC nanocomposite. Journal of Inorganic Materials, 2016, 31(9): 997-1003. |
[81] | YU C, XIE H H, FU C G, et al.High performance half-Heusler thermoelectric materials with refined grains and nanoscale precipitates. Journal of Materials Research, 2012, 27(19): 2457-2465. |
[82] | HU L P, WU H J, ZHU T J, et al. Tuning multiscale microstructures to enhance thermoelectric performance of n-type bismuth-telluride-based solid solutions. Advanced Energy Materials, 2015, 5(17): 1500411-1-13. |
[83] | HE J Q, GIRARD S N, KANATZIDIS M G, et al.Microstructure-lattice thermal conductivity correlation in nanostructured PbTe0.7S0.3 thermoelectric materials. Advanced Functional Materials, 2010, 20(5): 764-772. |
[84] | XIN J Z, WU H J, LIU X H, et al.Mg vacancy and dislocation strains as strong phonon scatterers in Mg2Si1-xSbx thermoelectric materials. Nano Energy, 2017, 34: 428-436. |
[85] | SHI X, BAI S Q, XI L L, et al.Realization of high thermoelectric performance in n-type partially filled skutterudites. Journal of Materials Research, 2011, 26(15): 1745-1754. |
[86] | KEPPENS V, MANDRUS D, SALES B C, et al.Localized vibrational modes in metallic solids. Nature, 1998, 395: 876-878. |
[87] | DUAN B, YANG J, SALVADOR J R, et al.Electronegative guests in CoSb3. Energy & Environmental Science, 2016, 9(6): 2090-2098. |
[88] | SAMANTA M, PAL K, PAL P, et al.Localized vibrations of bi bilayer leading to ultralow lattice thermal conductivity and high thermoelectric performance in weak topological insulator n-type BiSe. Journal of the American Chemical Society, 2018, 140(17): 5866-5872. |
[89] | UHER C, YANG J, HU S, et al.Transport properties of pure and doped MNiSn (M=Zr, Hf). Physical Review B, 1999, 59(13): 8615-8621. |
[90] | LI J F, LIU W S, ZHAO L D, et al.High-performance nanostructured thermoelectric materials. NPG Asia Materials, 2010, 2(4): 152-158. |
[91] | FANG T, ZHAO X B, ZHU T J.Band Structures and transport properties of high-performance half-heusler thermoelectric materials by first principles. Materials, 2018, 11(5): 847. |
[92] | TANG Y L, LI X S, MARTIN L H J, et al. Impact of Ni content on the thermoelectric properties of half-Heusler TiNiSn. Energy & Environmental Science, 2018, 11(2): 311-320. |
[93] | ZHU T J, YU G T, XU J, et al.The role of electron-phonon interaction in heavily doped fine-grained bulk silicons as thermoelectric materials. Advanced Electronic Materials, 2016, 2(8): 1600171. |
[94] | ABELES B.Lattice thermal conductivity of disordered semiconductor alloys at high temperatures. Physical Review, 1963, 131(5): 1906-1911. |
[95] | CLARKE D R.Materials selection guidelines for low thermal conductivity thermal barrier coatings.Surface and Coatings Technology, 2003, 163: 67-74. |
[96] | CAHILL D G, POHL R O.Heat flow and lattice vibrations in glasses. Solid State Communications, 1989, 70(10): 927-930. |
[97] | CAHILL D G, WATSON S K, POHL R O.Lower limit to the thermal conductivity of disordered crystals. Physical Review B, 1992, 46(10): 6131-6140. |
[98] | ALLEN P B, DU X Q, MIHALY L, et al.Thermal conductiity of insulating Bi2Sr2YCu2O8 and superconducting Bi2Sr2CaCu2O8: failure of the phonon-gas picture. Physical Rview B, 1994, 49(13): 9073-9079. |
[99] | FELDMAN J L, ALLEN P B, BICKHAM S R.Numerical study of low-frequency vibrations in amorphous silicon. Physical Review B, 1999, 59(5): 3551-3559. |
[100] | AGNE M T, HANUS R, SNYDER G J.Minimum thermal conductivity in the context of diffuson-mediated thermal transport.Energy & Environmental Science, 2018, 11(3): 609-616. |
[101] | POHL R O.Lattice vibrations of glasses. Journal of Non-Crystalline Solids, 2006, 352(32): 3363-3367. |
[102] | FU C G, ZHU T J, LIU Y T, et al.Band engineering of high performance p-type FeNbSb based half-Heusler thermoelectric materials for figure of merit zT>1. Energy & Environmental Science, 2015, 8(1): 216-220. |
[103] | WEI P, YANG J, GUO L, et al.Minimum thermal conductivity in weak topological insulators with bismuth-based stack structure. Advanced Functional Materials, 2016, 26(29): 5360-5367. |
[104] | RASCHE B, ISAEVA A, RUCK M, et al.Stacked topological insulator built from bismuth-based graphene sheet analogues. Nature Materials, 2013, 12(5): 422-425. |
[105] | PAULY C, RASCHE B, KOEPERNIK K, et al.Subnanometre-wide electron channels protected by topology. Nature Physics, 2015, 11(4): 338-343. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||