Master Pieces of Valuable Authors: Energy Materials
With rapid development of sustainable energies and energy conversion technologies, application prospect of thermoelectric (TE) materials in power generation and cooling has received increasing attention. The requirement of improving TE materials with high figure of merit becomes much more important. How to obtain the low lattice thermal conductivity is one of the main concerns in TE materials. In this review, the influences of specific heat, phonon group velocity and relaxation time on the lattice thermal conductivity are discussed, respectively. Several typical features of TE materials with intrinsic low lattice thermal conductivity are introduced, such as strong anharmonicity, weak chemical bonds and complex primitive cells. Introducing multiscale phonon scatterings to reduce the lattice thermal conductivity of known TE materials is also presented and discussed, including but not limited to point defect scattering, dislocation scattering, boundary scattering, resonance scattering and electron-phonon scattering. In addition, some theoretical models of the minimum lattice thermal conductivity are analyzed, which has certain theoretical significance for rapid screening of TE materials with low lattice thermal conductivity. Finally, the efficient ways to obtain the low lattice thermal conductivity for TE property optimization are proposed.
The nitrogen-doped porous carbon applied for oxygen reduction reaction (ORR) has aroused extensive interests due to its unique physical and chemical properties. However, the complicated nitrogen-doping strategy and high cost limit its extensive application. In this work, a series of nitrogen-doped porous carbons were prepared by a facile pyrolysis process coupling with subsequent KOH activation using renewable N-enriched biomass potato as carbon source. Effects of activation temperature and KOH amounts on the textural properties and electrocatalytic ORR activities of the final samples were investigated in detail. The KOH activation treatment results in a high specific surface area (SSA) and hierarchical porous structure, which is beneficial for improved ORR performance. The optimized NPC-750 possesses a high SSA of 1134.2 m 2?g -1, developed hierarchical pores as well as moderate nitrogen content (1.57at%). It also exhibits a positive onset potential of 0.89 V (vs. RHE) and half-wave potential of 0.79 V (vs. RHE). Simultaneously, the advanced long-time stability and methanol-tolerance capacity were also obtained, implying that these biomass-derived porous carbons are potential low-cost ORR electrocatalysts. Moreover, these porous carbons show great potential in various fields including supercapacitors, adsorption/separation, catalysis and batteries as well.
Thermoelectric (TE) power generation technology is highly expected for various applications such as special power supply, green energy, energy harvesting from the environment and harvesting of industrial waste heat. Over the past years, the record of zT values of TE materials has been continuously updated, which would bode well for widespread practical applications of TE technology. However, the TE device as the core technology for the TE application lags behind the development of TE materials. Especially, the large-scale application of TE power generation technology is facing bottlenecks and new challenges. This reviewpresents an overview of the recent progress on TE device design and integration with particular attentions on device optimization design, electrode fabrication, interface engineering, and service behavior. The future challenges and development strategies for large-scale application ofthermoelectric power generation are also discussed.
The quercus variabilis cork made up of cavity cells is used as raw material. Herein, the cork-derived activated carbon with the various pores was successfully prepared by the facile carbonization of cork followed by chemical activation. The as-prepared activated carbon sheets possess large specific surface area (2312 m 2/g) and unique interconnected pores. As a result, it shows excellent electrochemical performance as electrode material for supercapacitors. In three electrode system of KOH, it exhibits a high specific capacitance of 296 F/g at a current density of 0.1 A/g. The assembled symmetric supercapacitor shows a high specific capacitance of 201 F/g at 5 A/g, with a good cycling stability of 99.5 % capacitance retention after 5000 cycles. In two electrode system of Na2SO4, the symmetric supercapacitor displays a good rate performance of 80.5% retention from 0.5 A/g (174 F/g) to 50 A/g (140 F/g) and a high energy density of 19.62 Wh/kg.