Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (3): 247-259.DOI: 10.15541/jim20180335
Special Issue: 热电材料与器件
Previous Articles Next Articles
LUO Jun1,2, HE Shi-Yang1, LI Zhi-Li1, LI Yong-Bo1, WANG Feng1, ZHANG Ji-Ye1
Received:
2018-07-19
Revised:
2018-10-12
Published:
2019-03-20
Online:
2019-02-26
Supported by:
CLC Number:
LUO Jun, HE Shi-Yang, LI Zhi-Li, LI Yong-Bo, WANG Feng, ZHANG Ji-Ye. Progress on High-throughput Synthesis and Characterization Methods for Thermoelectric Materials[J]. Journal of Inorganic Materials, 2019, 34(3): 247-259.
Fig.6 (a) Scheme of a rotor with capsules for sedimentation experiment and (b) mechanism of sedimentation of atoms in the strong acceleration field[25]
Fig.7 (a) Optical image of the annealed Ti-Ni-Sn thin film materials library; (b-d) color-coded results of the high-throughput EDX measurements of the material library[27]
Fig.10 Composition trends over the sample library, (a) Si:Cu ratio for the glass-forming component, (b) glass transition temperature and (c) the total enthalpy of this glass reaction[35]
Fig.13 (a)Thermal conductivity imaging of a Cr-Ti diffusion couple and (b) numerical values for thermal conductivity across the path shown as a dashed line in (a)[40]
Fig. 15 Quantitative mapping of thermal conductivities, (a) changes in the probe resistance induced by samples with different thermal conductivities; Mappings of (b) resistance change and (c) corresponding thermal conductivities in Yb0.7Co4Sb12; (d) Line scan of resistance change across an interface between different phases[45]
Fig.16 (a) SEM image, (b) AFM topography image, and (c) thermal map image obtained with the SThM technique are shown simultaneously for the same area of the Ag2Se thin film[46]
Fig.22 (a) AFM topography image of Bi2Te3 thin film with 49 locations for nanoscale and (b) Seebeck voltage measurement, as indication by 49 dots in (a)[52]
[1] | WIDENER ANDREA.Materials genome initiative. Chem. Eng. News, 2013, 91(31): 25-27. |
[2] | RACCUGLIA PAUL, ELBERT KATHERINE C, ADLER PHILIP D F, et al. Machine-learning-assisted materials discovery using failed experiments. Nature, 2016, 533(7601): 73-75. |
[3] | HOCHBAUM ALLON I, CHEN RENKUN,DELGADO RAUL DIAZ, et al.Enhanced thermoelectric performance of rough silicon nanowires. Nature, 2008, 451(7175): 163-165. |
[4] | YOU LI, LIU YE-FENG, LI XIN, et al.Boosting the thermoelectric performance of PbSe through dynamic doping and hierarchical phonon scattering. Energy Environ. Sci., 2018, 11(7): 1848-1858. |
[5] | ZHU TIE-JUN, LIU YIN-TU, FU CHEN-GUANG, et al. Compromise and synergy in high-efficiency thermoelectric materials. Adv. Mater., 2017, 29(14): 1605884-1-26. |
[6] | PAN YU, AYDEMIR UMUT, GROVOGUI JANN A, et al. Melt-centrifuged (Bi,Sb)2Te3: engineering microstructure toward high thermoelectric efficiency. Adv. Mater., 2018, 30(34): 1802016-1-7. |
[7] | YU CUI, ZHU TIE-JUN, XIAO KAI, et al.Microstructure of ZrNiSn-base half-Heusler thermoelectric materials prepared by melt-spinning. [J].Inorg. Mater., 2010, 25(6): 569-572. |
[8] | LIU YIN-TU, FU CHEN-GUANG, XIA KAI-YANG, et al. Lanthanide contraction as a design factor for high-performance half-Heusler thermoelectric materials. Adv. Mater., 2018, 30(32): 1800881-1-7. |
[9] | YAO ZHENG, QIU PENG-FEI, LI XIAO-YA, et al.Investigation on quick fabrication of n-type filled Skutterudites.[J].Inorg. Mater., 2016, 31(12): 1375-1382. |
[10] | ZHANG JIA-WEI, LIU RUI-HENG, CHENG NIAN, et al.High- performance pseudocubic thermoelectric materials from non-cubic chalcopyrite compounds. Adv. Mater., 2014, 26(23): 3848-3853 |
[11] | BHATT RANU, BHATTACHARYA SHOVIT, BASU RANITA, et al.Enhanced thermoelectric properties of selenium-deficient layered TiSe2-x: a charge-density-wave material. ACS Appl. Mater. Interfaces,2014,6(21): 18619-18625. |
[12] | ZHAO LI-DONG, DRAVID VINAYAK P, KANATZIDIS MERCOURI G.The panoscopic approach to high performance thermoelectrics. Energy Environ. Sci., 2014, 7(1): 251-268. |
[13] | PEI YAN-ZHONG, HEINZ NICHOLAS A, AARON LALONDE, et al.Combination of large nanostructures and complex band structure for high performance thermoelectric lead telluride. Energy Environ. Sci., 2011, 4(9): 3640-3645. |
[14] | YAN Y G, MARTIN J, WONG-NG W, et al. A temperature dependent screening tool for high throughput thermoelectric characterization of combinatorial films. Rev. Sci. Instrum., 2013, 84(11): 115110-1-7. |
[15] | XIANG XIAO-DONG, SUN XIAO-DONG, BRICEÑO GABRIEL, et al. A combinatorial approach to materials discovery. Science, 1995, 268(5218): 1738-1740. |
[16] | FUJIMOTO K, KATO T, ITO S, et al.Development and application of combinatorial electrostatic atomization system “M-ist Combi”: high-throughput preparation of electrode materials. Solid State Ionics, 2006, 177(26-32): 2639-2642. |
[17] | FUJIMOTO KENJIRO, TAGUCHI TORU, SHOGO YOSHIDA, et al.Design of Seebeck coefficient measurement probe for powder library. ACS Comb. Sci., 2014, 16(2): 66-70 |
[18] | HEDEGAARD ELLEN M J, JOHNSEN SIMON, BJERG LASSE, et al. Functionally graded Ge1-xSix thermoelectrics by simultaneous band gap and carrier density engineering. Chem. Mater., 2014, 26(17): 4992-4997. |
[19] | KASAP SAFA, CAPPER PETER.Springer Handbook of Electronic and Photonic Materials. New York: Springer Science Business Media, Inc., 2006: 236. |
[20] | HEDEGAARD ELLEN M J, MAMAKHEL AREF A H, REARDON HAZEL, et al. Functionally graded (PbTe)1-x(SnTe)x thermoelectrics. Chem. Mater., 2018, 30(1): 280-287. |
[21] | KOHRI H, NISHIDA I A, SHIOTA I. Improvement of thermoelectric properties for n-type PbTe by adding Ge. Mater. Sci. Forum, 2003, 423-425: 381-384. |
[22] | ZHAO JI CHENG, JACKSON MELVIN R, PELUSO LOUIS A, et al.A diffusion multiple approach for the accelerated design of structural materials. MRS Bull., 2002, 27(4): 324-329. |
[23] | GELBSTEIN Y, DASHEVSKY Z, DARIEL M P.Powder metallurgical processing of functionally graded p-Pb1-xSnxTe materials for thermoelectric applications. Phys. B, 2007, 391(2): 256-265. |
[24] | HAZAN EDEN, OHAD BEN-YEHUDA, MADAR NAOR, et al. Functional graded germanium-lead chalcogenide-based thermoelectric module for renewable energy applications. Adv. Energy Mater., 2015, 5(11): 1500272-1-8. |
[25] | JANUSZKO KAMILA, STABRAWA ARTUR, OGATA YUDAI, et al.Influence of sedimentation of atoms on structural and thermoelectric properties of Bi-Sb alloys. [J]. Electron. Mater., 2016, 45(3): 1947-1955. |
[26] | ZIOLKOWSKI PAWEL, WAMBACH MATTHIAS, LUDWIG ALFRED, et al.Application of high-throughput Seebeck microprobe measurements on thermoelectric half-Heusler thin film combinatorial material libraries. ACS Comb. Sci., 2018, 20(1): 1-18. |
[27] | WAMBACH MATTHIAS, STERN ROBIN, BHATTACHARYA SANDIP, et al. Unraveling self-doping effects in thermoelectric TiNiSn half-Heusler compounds by combined theory and high-throughput experiments. Adv. Electron. Mater., 2016, 2(3): 1500208- 1-9. |
[28] | XIANG XIAO-DONG.High throughput synthesis and screening for functional materials. Appl. Surf. Sci., 2004, 223(1/3): 54-61. |
[29] | ZHAO JI-CHENG, ZHENG XUAN, CAHILLBDAVID G.Thermal conductivity mapping of the Ni-Al system and the beta-NiAl phase in the Ni-Al-Cr system. Scripta Mater., 2012, 66(11): 935-938. |
[30] | MAO SAMUELS.High throughput growth and characterization of thin film materials. J. Cryst. Growth, 2013, 379: 123-130. |
[31] | PERNOT GILLES, MICHEL HÉLÈNE, VERMEERSCH BJORN, et al. Frequency-dependent thermal conductivity in time domain thermoreflectance analysis of thin films. Mater. Res. Soc. Symp. Proc., 2011, 1347: DOI: 10.1557/opl.2011.1277. |
[32] | PADDOCK CAROLYN A, EESLEY GARY L.Transient thermoreflectance from thin metal films. [J]. Appl. Phys., 1986,60(1): 285-290. |
[33] | ABADA B, BORCA-TASCIUC D A, MARTIN-GONZALEZA M S. Non-contact methods for thermal properties measurement. Renew. Sust. Energ. Rev., 2017, 76: 1348-1370. |
[34] | MCCLUSKEY PATRICK J, VLASSAK JOOST J.Combinatorial nanocalorimetry. [J]. Mater. Res., 2010, 25(11): 2086-2100. |
[35] | GREGOIREJOHN M, MCCLUSKEYPATRICK J, DALEDARREN, et al. Combining combinatorial nanocalorimetry and X-ray diffraction techniques to study the effects of composition and quench rate on Au-Cu-Si metallic glasses. Scripta Mater., 2012, 66(3/4): 178-181. |
[36] | TRITT TERRY M.Thermal Conductivity: Theory, Properties, and Applications. New York: Kluwer Academic/Plenum Publishers, 2004: 225-231. |
[37] | EESLEY G L.Observation of nonequilibrium electron heating in copper. Phys. Rev. Lett., 1983, 51(23): 2140-2143. |
[38] | FAVALORO T, BAHK J H, SHAKOURI A. Characterization of the temperature dependence of the thermoreflectance coefficient for conductive thin films. Rev. Sci. Instrum., 2015, 86(2): 024903- 1-9. |
[39] | MANZANO CRISTINA V, ABAD BEGOÑA, MUÑOZ MIGUEL ROJO, et al. Anisotropic effects on the thermoelectric properties of highly oriented electrodeposited Bi2Te3 films. Sci. Rep., 2016, 6: 19129-1-8. |
[40] | HUXTABLE SCOTT, CAHILL DAVID G, FAUCONNIER VINCENT, et al.Thermal conductivity imaging at micrometre-scale resolution for combinatorial studies of materials. Nat. Mater., 2004, 3(5): 298-301. |
[41] | NISHI TSUYOSHI, YAMAMOTO SUGURU, MORI OKAWA, et al.Thermal microscope measurement of thermal effusivity distribution in compositionally graded PbTe-Sb2Te3-Ag2Te alloy system. Thermochim. Acta, 2018, 659: 39-43. |
[42] | WIELGOSZEWSKI GRZEGORZ, GOTSZALKA TEODOR.Scanning thermal microscopy (SThM): how to map temperature and thermal properties at the nanoscale. Adv. Imag. Electron Phys., 2015, 190: 177-221 |
[43] | GRAUBY STÉPHANE, PUYOO ETIENNE, RAMPNOUX JEAN-MICHEL, et al.Si and SiGe nanowires: fabrication process and thermal conductivity measurement by 3ω-scanning thermal microscopy. J. Phys. Chem. C, 2013, 117(17): 9025-9034. |
[44] | KING WILLIAM P, KENNY THOMAS W.Design of atomic force microscope cantilevers for combined thermomechanical writing and thermal reading in array operation. J. Microelectromech. S., 2002, 11(6): 765-774. |
[45] | ESFAHANI EHSAN NASR, MA FEI-YUE, WANG SHAN-YU,et al.Quantitative nanoscale mapping of three-phase thermal conductivities in filled skutterudites via scanning thermal microscopy. Natl. Sci. Rev., 2018, 5(1): 59-69. |
[46] | ANDRES PEREZ-TABORDA J, CABALLERO-CALERO O, VERA-LONDONO L, et al. High thermoelectric zT in n-type silver selenide films at room temperature. Adv. Energy Mater., 2018, 8(8): 1870033-1-8. |
[47] | MARHOUN FERHAT, JIRO NAGAO.Thermoelectric and transport properties of β-Ag2Se compounds. [J]. Appl. Phys., 2000, 88(2): 813-816. |
[48] | WU K H, HUNG C I, ZIOLKOWSKI P, et al. Improvement of spatial resolution for local Seebeck coefficient measurements by deconvolution algorithm. Rev. Sci. Instrum., 2009, 80(10): 105104-1-8. |
[49] | ZHOU AI-JUN, WANG WEI-HANG, YAO XU, et al.Impact of the film thickness and substrate on the thermopower measurement of thermoelectric films by the potential-Seebeck microprobe (PSM). Appl. Therm. Eng., 2016, 107: 552-559. |
[50] | MI JIAN-LI, BREMHOLM MARTIN, BIANCHI MARCO, et al.Phase separation and bulk p-n transition in single crystals of Bi2Te2Se topological insulator. Adv. Mater., 2013, 25(6): 889-893. |
[51] | DE BOOR J, STIEWEP C,ZIOLKOWSKI P, et al.High-temperature measurement of Seebeck coefficient and electrical conductivity. [J]. Electron. Mater., 2013, 42(7): 1711-1718. |
[52] | XU K Q, ZENG H R, YU H Z, et al.Ultrahigh resolution characterizing nanoscale Seebeck coefficient via the heated, conductive AFM probe. Appl. Phys. A, 2015, 118(1): 57-61. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||