Journal of Inorganic Materials
ZHOU Cui1, LI Jie2, SUN Luchao2, SU Haijun3, WANG Jingyang2
Received:2025-10-31
Revised:2025-12-26
Contact:
SUN Luchao, professor. E-mail: lcsun@imr.ac.cn; SU Haijun, professor. E-mail: shjnpu@nwpu.edu.cn
About author:ZHOU Cui (1997-), female, PhD. E-mail: zhouc@lam.ln.cn
Supported by:CLC Number:
ZHOU Cui, LI Jie, SUN Luchao, SU Haijun, WANG Jingyang. Alumina-based Directionally Solidified Eutectic Ceramics:Microstructure, Control Strategies and Environmental Stability[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250440.
| [1] 杜昆, 陈麒好, 孟宪龙, 等. 陶瓷基复合材料在航空发动机热端部件应用及热分析研究进展. 推进技术, 2022, 43(2): 113. [2] 林左鸣. 战斗机发动机的研制现状和发展趋势. 航空发动机, 2006, 32(1): 1. [3] PEREPEZKO J H.The hotter the engine, the better.Science, 2009, 326(5956): 1068. [4] PADTURE N P.Advanced structural ceramics in aerospace propulsion.Nature Materials, 2016, 15(8): 804. [5] 杨金华, 董禹飞, 杨瑞, 等. 航空发动机用陶瓷基复合材料研究进展. 航空动力, 2021, 5: 56. [6] WAKU Y, NAKAGAWA N, WAKAMOTO T, et al. A ductile ceramic eutectic composite with high strength at 1873 K. Nature, 1997, 389(6646): 49. [7] WAKU Y, NAKAGAWA N, OHTSUBO H,et al. Fracture and deformation behaviour of melt growth composites at very high temperatures. Journal of Materials Science, 2001, 36(7): 1585. [8] WANG Z G, ZHANG Y Z, OUYANG J H,et al. Nanocrystalline alumina-zirconia-based eutectic ceramics fabricated with high-energy beams: principle, solidification techniques, microstructure and mechanical properties. Materials, 2023, 16(8): 2985. [9] REN Q, SU H J, ZHANG J,et al. Processing, microstructure and performance of Al2O3/Er3Al5O12/ZrO2 ternary eutectic ceramics prepared by laser floating zone melting with ultra-high temperature gradient. Ceramics International, 2018, 44(5): 4766. [10] MESA M C, OLIETE P B, ORERA V M,et al. Microstructure and mechanical properties of Al2O3/Er3Al5O12 eutectic rods grown by the laser-heated floating zone method. Journal of the European Ceramic Society, 2011, 31(7): 1241. [11] VIECHNICKI D, SCHMID F.Eutectic solidification in the system Al2O3/Y3Al5O12.Journal of Materials Science, 1969, 4(1): 84. [12] LIU J L, LIU D G, REN K,et al. Research progress on the flash sintering mechanism of oxide ceramics and its application. Journal of Inorganic Materials, 2022, 37(5): 473. [13] XIONG Z W, ZHANG K, LIAO W H,et al. Laser powder bed fusion fabrication of TiB2-Modified Al2O3-ZrO2 eutectic ceramics: microstructure evolution and mechanical properties. Ceramics International, 2024, 50(24): 55577. [14] AOKI Y, MASUDA H, TOCHIGI E,et al. Overcoming the intrinsic brittleness of high-strength Al2O3-GdAlO3 ceramics through refined eutectic microstructure. Nature Communications, 2024, 15: 8700. [15] YOSHIMURA M, SAKATA S I, YAMADA S,et al. The growth of Al2O3/YAG: Ce melt growth composite by the vertical bridgman technique using an a-axis Al2O3 seed. Journal of Crystal Growth, 2015, 427: 16. [16] YOSHIMURA M, SAKATA S I, IBA H,et al. Vertical bridgman growth of Al2O3/YAG: Ce melt growth composite. Journal of Crystal Growth, 2015, 416: 100. [17] LIU Y, SU H J, TAN X,et al. Stability of crystallographic texture and mechanical anisotropy toward Al2O3/YAG eutectic ceramic composite using single crystalline seeds. Composites Part B: Engineering, 2024, 274: 111263. [18] CHERIF M, DUFFAR T, CARROZ L,et al. On the growth and structure of Al2O3-Y3Al5O12-ZrO2: Y solidified eutectic. Journal of the European Ceramic Society, 2020, 40(8): 3172. [19] EPELBAUM B M, YOSHIKAWA A, SHIMAMURA K,et al. Microstructure of Al2O3/Y3Al5O12 eutectic fibers grown by μ-PD method. Journal of Crystal Growth, 1999, 198: 471. [20] BENAMARA O, CHERIF M, DUFFAR T,et al. Microstructure and crystallography of Al2O3-Y3Al5O12-ZrO2 ternary eutectic oxide grown by the micropulling down technique. Journal of Crystal Growth, 2015, 429: 27. [21] BENAMARA O, LEBBOU K.The impact of the composition and solidification rate on the microstructure and the crystallographic orientations of Al2O3-YAG-ZrO2 eutectic solidified by the micro-pulling down technique.RSC Advances, 2021, 11(22): 13602. [22] SU H J, ZHANG J, DENG Y F,et al. A modified preparation technique and characterization of directionally solidified Al2O3/Y3Al5O12 eutectic in situ composites. Scripta Materialia, 2009, 60(6): 362. [23] REN Q, SU H J, ZHANG J,et al. Solid-liquid interface and growth rate range of Al2O3-based eutectic in situ composites grown by laser floating zone melting. Journal of Alloys and Compounds, 2016, 662: 634. [24] SU H J, SHEN Z L, REN Q,et al. Evolutions of rod diameter, molten zone and temperature gradient of oxide eutectic ceramics during laser floating zone melting. Ceramics International, 2020, 46(11): 18750. [25] WANG X, WANG J Y, SUN L C,et al. Microstructure evolution of Al2O3/Y3Al5O12 eutectic crystal during directional solidification. Scripta Materialia, 2015, 108: 31. [26] LIU Y, SU H J, TAN X,et al. The effect of processing parameters on the temperature distribution and interface shape in Czochralski growth of Al2O3/YAG eutectic ceramic composite: modeling and experiment. Ceramics International, 2025, 51(22): 36401. [27] WAKU Y, SAKATA S, MITANI A,et al. Microstructure and high-temperature strength of Al2O3/Er3Al5O12/ZrO2 ternary melt growth composite. Journal of Materials Science, 2005, 40(3): 711. [28] WANG X, TIAN Z L, ZHANG W,et al. Mechanical properties of directionally solidified Al2O3/Y3Al5O12 eutectic ceramic prepared by optical floating zone technique. Journal of the European Ceramic Society, 2018, 38(10): 3610. [29] WANG X, ZHONG Y J, WANG D,et al. Effect of interfacial energy on microstructure of a directionally solidified Al2O3/YAG eutectic ceramic. Journal of the American Ceramic Society, 2018, 101(3): 1029. [30] SUN L C, ZHOU C, DU T F, et al. Directionally solidified Al2O3/Er3Al5O12 and Al2O3/Yb3Al5O12 eutectic ceramics prepared by optical floating zone melting. Journal of Inorganic Materials, 2021, 36(6): 652. [31] JACSON K A, HUNT J D.Lamellar and rod eutectic growth.Transactions of the Metallurgical Society of AIME, 1966, 236(8): 363. [32] SU H J, ZHANG J, CUI C J,et al. Rapid solidification of Al2O3/Y3Al5O12/ZrO2 eutectic in situ composites by laser zone remelting. Journal of Crystal Growth, 2007, 307(2): 448. [33] ORERA V M, MERINO R I, PARDO J A,et al. Microstructure and physical properties of some oxide eutectic composites processed by directional solidification. Acta Materialia, 2000, 48(18/19): 4683. [34] LLORCA J, ORERA V M.Directionally solidified eutectic ceramic oxides.Progress in Materials Science, 2006, 51(6): 711. [35] SUN J Z, STIRNER T, MATTHEWS A.Structure and surface energy of low-index surfaces of stoichiometricα-Al2O3 and α-Cr2O3. Surface and Coatings Technology, 2006, 201(7): 4205. [36] SUN H F, ZHOU C, DU T F,et al. Preparation, microstructures, and mechanical properties of directionally solidified Al2O3/Lu3Al5O12 eutectic ceramics. International Journal of Applied Ceramic Technology, 2022, 19(2): 695. [37] XU X, FAN J Y, LIU J L,et al. Formation of eutectic structure in dense Al2O3-YAG composite by electric field treatment. Ceramics International, 2021, 47(16): 23647. [38] XIONG Z W, ZHANG K, ZHU Z G,et al. Effect of laser focus shift on the forming quality, microstructure and mechanical properties of additively manufactured Al2O3-ZrO2 eutectic ceramics. Ceramics International, 2023, 49(22): 35948. [39] YAO S, LIU D G, LIU J L,et al. Ultrafast preparation of Al2O3-ZrO2 multiphase ceramics with eutectic morphology via flash sintering. Ceramics International, 2021, 47(22): 31555. [40] YAO S, LIU Y S, LIU D G,et al. Flash sintering of Al2O3-ZrO2 ceramics under alternating current electric field. Ceramics International, 2022, 48(24): 36764. [41] WANG X, ZHONG Y J, HU Q D.A review of Al2O3-based eutectic ceramics for high-temperature structural materials.Journal of Materials Science & Technology, 2025, 214: 214. [42] ZHONG Y J, YUAN Y, LI H D,et al. Orientation relationships of seed crystal-induced Al2O3/GdAlO3 eutectic ceramics. Acta Materialia, 2025, 294: 121094. [43] WANG X, ZHANG W, ZHONG Y J,et al. Introduction of low strain energy GdAlO3 grain boundaries into directionally solidified Al2O3/GdAlO3 eutectics. Acta Materialia, 2021, 221: 117355. [44] SU H J, ZHANG J, MA W D,et al. In situ fabrication of highly-dense Al2O3/YAG nanoeutectic composite ceramics by a modified laser surface processing. Journal of the European Ceramic Society, 2014, 34(3): 739. [45] LIU Y, SU H J, SHEN Z L,et al. Insight into the complex coupled growth behavior of Al2O3/YAG eutectic ceramic based on the evolutions of microstructure and crystallographic texture. Journal of the European Ceramic Society, 2023, 43(10): 4482. [46] WANG X, ZHANG W, XIAN Q G,et al. Preparation and microstructure of large-sized directionally solidified Al2O3/Y3Al5O12 eutectics with the seeding technique. Journal of the European Ceramic Society, 2018, 38(16): 5625. [47] SAKATA S, MITANI A, SHIMIZU K,et al. Crystallographic orientation analysis and high temperature strength of melt growth composite. Journal of the European Ceramic Society, 2005, 25(8): 1441. [48] MAZEROLLES L, PERRIERE L, LARTIGUE-KORINEK S,et al. Microstructures, crystallography of interfaces, and creep behavior of melt-growth composites. Journal of the European Ceramic Society, 2008, 28(12): 2301. [49] LIU Y, SU H J, LU Z,et al. Collaborative enhancement of luminous efficacy and fracture toughness based on interface design of Al2O3/YAG: Ce3+ eutectic phosphor ceramic grown by laser floating zone melting. Ceramics International, 2022, 48(7): 10144. [50] WANG X, ZHONG Y J, SUN Q,et al. Competitive growth of Al2O3/YAG/ZrO2 eutectic ceramics during directional solidification: effect of interfacial energy. Journal of the American Ceramic Society, 2019, 102(4): 2176. [51] MAZEROLLES L, MICHEL D, HŸTCH M J. Microstructures and interfaces in directionally solidified oxide-oxide eutectics.Journal of the European Ceramic Society, 2005, 25(8): 1389. [52] MAZEROLLES L, MICHEL D, PORTIER R.Interfaces in oriented Al2O3-ZrO2 (Y2O3) eutectics.Journal of the American Ceramic Society, 1986, 69(3): 252. [53] SAYIR A, FARMER S C.The effect of the microstructure on mechanical properties of directionally solidified Al2O3/ZrO2(Y2O3) eutectic.Acta Materialia, 2000, 48(18/19): 4691. [54] KURZ W, FISHER D J, RAPPAZ M.Fundamentals of solidification 5th edition. Trans Tech Publications Ltd: Switzerland, 2023, 103(5): 372. [55] MA Y H, WANG Z G, OUYANG J H,et al. In-situ microcantilever deflection to evaluate the interfacial fracture properties of binary Al2O3/SmAlO3 eutectic. Journal of the European Ceramic Society, 2019, 39(10): 3277. [56] 沈强, 吴信婷, 魏琴琴, 等. 高密度高温高熵合金与陶瓷共晶复合材料的研究进展. 硅酸盐学报, 2024, 52(2): 463. [57] GAO R, CHU Z F, WANG S H,et al. The evolution of Al2O3/GdAlO3/ZrO2 ternary eutectic ceramic microstructure and property with the growth rate. Journal of Materials Research, 2024, 39(5): 801. [58] ZHANG Y Z, WANG Z G, XIE L Y,et al. Laser surface nanocrystallization of oxide ceramics with eutectic composition: a comprehensive review. Heat Treatment and Surface Engineering, 2021, 3(1): 37. [59] XIE L Y, WANG Z G, ZHANG Y Z,et al. Microstructural refinement and mechanical response of Al2O3-ZrO2 eutectics fabricated by a novel pulse discharge plasma assisted melting method. Ceramics International, 2022, 48(16): 23510. [60] ZHONG Y J, LIU Y R, GAO Q,et al. Microstructure of directionally solidified Al2O3/EAG eutectic ceramics prepared with high-temperature gradient. Ceramics International, 2021, 47(4): 5456. [61] PASTOR J Y, LLORCA J, SALAZAR A,et al. Mechanical properties of melt-grown alumina-yttrium aluminum garnet eutectics up to 1900 K. Journal of the American Ceramic Society, 2005, 88(6): 1488. [62] OLIETE P B, MESA M C, MERINO R I,et al. Directionally solidified Al2O3-Yb3Al5O12 eutectics for selective emitters. Solar Energy Materials and Solar Cells, 2016, 144: 405. [63] LEE J H, YOSHIKAWA A, MURAYAMA Y,et al. Microstructure and mechanical properties of Al2O3/Y3Al5O12/ZrO2 ternary eutectic materials. Journal of the European Ceramic Society, 2005, 25(8): 1411. [64] LEE J H, YOSHIKAWA A, FUKUDA T,et al. Growth and characterization of Al2O3/Y3Al5O12/ZrO2 ternary eutectic fibers. Journal of Crystal Growth, 2001, 231(1/2): 115. [65] 贾晓娇, 张军, 苏海军, 等. 激光悬浮区熔Al2O3基共晶自生复合材料微观组织与力学性能. 金属学报, 2012, 48(12): 1479. [66] SONG K, ZHANG J, JIA X J,et al. Microstructure of Al2O3/YAG/ZrO2 hypereutectic alloy directionally solidified by laser floating zone method. Acta Metallurgica Sinica, 2012, 48(2): 220. [67] SU H J, ZHANG J, LIU L,et al. Preparation and microstructure evolution of directionally solidified Al2O3/YAG/YSZ ternary eutectic ceramics by a modified electron beam floating zone melting. Materials Letters, 2013, 91: 92. [68] LIU Z, SONG K, GAO B,et al. Microstructure and mechanical properties of Al2O3/ZrO2 directionally solidified eutectic ceramic prepared by laser 3D printing. Journal of Materials Science & Technology, 2016, 32(4): 320. [69] WANG S H, PEÑA J I, LUN Z Y,et al. Optimization of growth theory of the directionally solidified alumina based eutectic ceramics. Journal of Alloys and Compounds, 2024, 982: 173783. [70] CAO X, SU H J, GUO F W, et al. Directionally solidified Al2O3/GAP eutectic ceramics by micro-pulling-down method. AIP Conference Proceddings, 2016, 1783: 020021. [71] ZHAO D, SU H J, LU B H,et al. Ultra-high strength micro-nano quasi-monocrystalline Al2O3/Y3Al5O12/ZrO2 ternary eutectic ceramics processed by high-speed directional solidification. Journal of the European Ceramic Society, 2025, 45(13): 117485. [72] YAO S, LIU Y S, LIU D G,et al. Effect of the Al2O3 content on the microstructure evolution of flash-sintered Al2O3-8YSZ ceramics. Open Ceramics, 2023, 16: 100468. [73] WU D J, YU X X, ZHAO Z Y,et al. One-step additive manufacturing of TiCp reinforced Al2O3-ZrO2 eutectic ceramics composites by laser directed energy deposition. Ceramics International, 2023, 49(8): 12758. [74] WU D J, SHI J, NIU F Y,et al. Direct additive manufacturing of melt growth Al2O3-ZrO2 functionally graded ceramics by laser directed energy deposition. Journal of the European Ceramic Society, 2022, 42(6): 2957. [75] WANG S H, LIU J C.Microstructure and growth characteristics of Al2O3/Er2O3/ZrO2 solidified ceramics with different compositions.Journal of the European Ceramic Society, 2021, 41(7): 4284. [76] SU H J, LIU Y, REN Q,et al. Distribution control and formation mechanism of gas inclusions in directionally solidified Al2O3-Er3Al5O12-ZrO2 ternary eutectic ceramic by laser floating zone melting. Journal of Materials Science & Technology, 2021, 66: 21. [77] LIU Y, SU H J, SHEN Z L,et al. Effect of seed orientations on crystallographic texture control in faceted Al2O3/YAG eutectic ceramic during directional solidification. Journal of Materials Science & Technology, 2023, 146: 86. [78] ZHOU C, SUN L C, DU T F,et al. Microstructure, crystallographic texture and mechanical properties of directionally solidified high-entropy (Y0.2Gd0.2Ho0.2Er0.2Yb0.2)AG/Al2O3 eutectic oxides: insights of growth rate control. Journal of Materials Science & Technology, 2026, 252: 232. [79] LIU Y, SU H J, TAN X,et al. Unveiling crystallographic texture in laser floating zone melted Al2O3/YAG eutectic ceramic by seed-crystal inducing. Ceramics International, 2024, 50(20): 40185. [80] HE L T, WANG X, LI J Z,et al. Can orientations of directionally solidified dual-phase Al2O3/YAG eutectics be induced by single-phase sapphire seeds? Journal of Materials Science & Technology, 2023, 142: 216. [81] HE Z S, XUAN W D, HU T,et al. Development of a novel (Mg0.25Co0.25Ni0.25Zn0.25)O medium entropy oxide for dielectric applications. Ceramics International, 2024, 50(17): 31598. [82] CAI J H, LAN S, WEI B,et al. Colossal permittivity in high-entropy CaTiO3 ceramics by chemical bonding engineering. Nature Communications, 2025, 16: 4008. [83] WANG Y C, REECE M J.Oxidation resistance of (Hf-Ta-Zr-Nb)C high entropy carbide powders compared with the component monocarbides and binary carbide powders.Scripta Materialia, 2021, 193: 86. [84] SUN J, GUO L X, ZHANG Y Y,et al. Superior phase stability of high entropy oxide ceramic in a wide temperature range. Journal of the European Ceramic Society, 2022, 42(12): 5053. [85] SUN L C, REN X M, LUO Y X,et al. Exploration of the mechanism of enhanced CMAS corrosion resistance at 1500 ℃ for multicomponent (Er0.25Tm0.25Yb0.25Lu0.25)2Si2O7 disilicate. Corrosion Science, 2022, 203: 110343. [86] LUO Y X, SUN L C, WANG J M,et al. Phase formation capability and compositional design of β-phase multiple rare-earth principal component disilicates. Nature Communications, 2023, 14: 1275. [87] ZHONG Y J, XIANG W S, HE L T,et al. Directionally solidified Al2O3/(Y0.2Er0.2Yb0.2Ho0.2Lu0.2)3Al5O12 eutectic high-entropy oxide ceramics with well-oriented structure, high hardness, and low thermal conductivity. Journal of the European Ceramic Society, 2021, 41(14): 7119. [88] ZHOU C, LUO Z P, DU T F,et al. Directionally solidified high-entropy (Y0.2Gd0.2Ho0.2Er0.2Yb0.2)3Al5O12/Al2O3 eutectic with outstanding crystallographic texture formation capability. Scripta Materialia, 2022, 220: 114939. [89] ZHONG Y J, LI Z, WANG X.Seed-crystal-induced directional solidification toward Al2O3/(Y0.2Er0.2Yb0.2Ho0.2Lu0.2)3Al5O12/ZrO2 ternary eutectic ceramics.Acta Materialia, 2024, 262: 119369. [90] ZHONG Y J, LI Z, WANG X.Insight into tuning of ZrO2 distribution and mechanical properties of directionally solidified Al2O3/(5Re0.2)AG/ZrO2 eutectic ceramic composites.Composites Part B: Engineering, 2023, 266: 111016. [91] XIONG Z W, ZHANG K, LIAO W H,et al. In-situ synthesis of high-entropy Al2O3/RE3Al5O12/ZrO2 ceramic by laser powder bed fusion with exceptional properties. Journal of Advanced Ceramics, 2024, 13(12): 2004. [92] LIU H F, SU H J, SHEN Z L,et al. Insights into high thermal stability of laser additively manufactured Al2O3/GdAlO3/ZrO2 eutectic ceramics under high temperatures. Additive Manufacturing, 2021, 48: 102425. [93] WANG Z G, OUYANG J H, MA Y H,et al. Grain size dependence, mechanical properties and surface nanoeutectic modification of Al2O3-ZrO2 ceramic. Ceramics International, 2019, 45(11): 14297. [94] ZHAO D K, BI G J, CHEN J,et al. Melt-grown behaviour of heat treated high-purity alumina ceramics prepared by laser directed energy deposition. Ceramics International, 2024, 50(1): 1777. [95] WANG S H, LIU J C, LAN D H,et al. Microstructural stability and high temperature strength of directionally solidified Al2O3/Er3Al5O12/ZrO2 eutectic ceramics. Ceramics International, 2024, 50(1): 306. [96] SU H J, SHEN Z L, MA W D,et al. Comprehensive microstructure regularization mechanism and microstructure-property stability at 1773 K of directionally solidified Al2O3/GdAlO3 eutectic ceramic composite. Composites Part B: Engineering, 2023, 256: 110647. [97] HAO S Q, SU H J, ZHAO D,et al. Complex shaped Al2O3/YAG/ZrO2 eutectic ceramics with excellent high temperature mechanical properties printed by vat photopolymerization. Additive Manufacturing, 2025, 101: 104703. [98] BAKAN E, SOHN Y J, KUNZ W,et al. Effect of processing on high-velocity water vapor recession behavior of Yb-silicate environmental barrier coatings. Journal of the European Ceramic Society, 2019, 39(4): 1507. [99] MA Y J, GUO C, CUI Y J,et al. Enhanced water-oxygen corrosion resistance of SiC/SiC composites at 1350 ℃ via a single-layer Y-Al-Si-O glass-ceramics environmental barrier coating. Journal of the European Ceramic Society, 2024, 44(15): 116728. [100] BAHLAWANE N, WATANABE T, WAKU Y,et al. Effect of moisture on the high-temperature stability of unidirectionally solidified Al2O3/YAG eutectic composites. Journal of the American Ceramic Society, 2000, 83(12): 3077. [101] SUN H F, SUN L C, REN X M,et al. Outstanding molten calcium-magnesium-aluminosilicate (CMAS) corrosion resistance of directionally solidified Al2O3/Y3Al5O12 eutectic ceramic at 1500 ℃. Corrosion Science, 2023, 220: 111289. [102] ZHOU C, SUN L C, DU T F,et al. Excellent calcium-magnesium-aluminosilicate corrosion resistance of high-entropy garnet/alumina directionally solidified eutectic at 1500 ℃. Journal of the American Ceramic Society, 2024, 107(3): 1748. [103] LIU Y, SU H J, SHEN Z L,et al. High temperature calcium-magnesium-alumina-silicate (CMAS) corrosion behavior of directionally solidified Al2O3/YAG eutectic ceramic. Journal of Materials Science & Technology, 2023, 165: 66. [104] TAN X, SU H J, LIU Y,et al. CMAS corrosion resistance and mechanism of directionally solidified Al2O3/YAG eutectic ceramics at high temperatures of 1300-1500 ℃. Corrosion Science, 2025, 248: 112793. [105] LI J, LUO Z X, CUI Y,et al. CMAS corrosion resistance of Y3Al5O12/Al2O3 ceramic coating deposited by atmospheric plasma spraying. Journal of Inorganic Materials, 2024, 39(6): 671. |
| [1] | FAN Yuzhu, WANG Yuan, WANG Linyan, XIANG Meiling, YAN Yuting, LI Benhui, LI Min, WEN Zhidong, WANG Haichao, CHEN Yongfu, QIU Huidong, ZHAO Bo, ZHOU Chengyu. Graphene Oxide-based Adsorbents for Pb(II) Removing in Water: Progresses on Synthesis, Performance and Mechanism [J]. Journal of Inorganic Materials, 2026, 41(1): 12-26. |
| [2] | XU Jintao, GAO Pan, HE Weiyi, JIANG Shengnan, PAN Xiuhong, TANG Meibo, CHEN Kun, LIU Xuechao. Recent Progress on Preparation of 3C-SiC Single Crystal [J]. Journal of Inorganic Materials, 2026, 41(1): 1-11. |
| [3] | YU Shengyang, SU Haijun, JIANG Hao, YU Minghui, YAO Jiatong, YANG Peixin. A Review of Pore Defects in Ultra-high Temperature Oxide Ceramics by Laser Additive Manufacturing: Formation and Suppression [J]. Journal of Inorganic Materials, 2025, 40(9): 944-956. |
| [4] | LIU Jiangping, GUAN Xin, TANG Zhenjie, ZHU Wenjie, LUO Yongming. Research Progress on Catalytic Oxidation of Nitrogen-containing Volatile Organic Compounds [J]. Journal of Inorganic Materials, 2025, 40(9): 933-943. |
| [5] | XIAO Xiaolin, WANG Yuxiang, GU Peiyang, ZHU Zhenrong, SUN Yong. Advances in Regulation of Damaged Skin Regeneration by Two-dimensional Inorganic Materials [J]. Journal of Inorganic Materials, 2025, 40(8): 860-870. |
| [6] | MA Jingge, WU Chengtie. Application of Inorganic Bioceramics in Promoting Hair Follicle Regeneration and Hair Growth [J]. Journal of Inorganic Materials, 2025, 40(8): 901-910. |
| [7] | ZHANG Hongjian, ZHAO Ziyi, WU Chengtie. Inorganic Biomaterials on Regulating Neural Cell Function and Innervated Tissue Regeneration: A Review [J]. Journal of Inorganic Materials, 2025, 40(8): 849-859. |
| [8] | AI Minhui, LEI Bo. Micro-nanoscale Bioactive Glass: Functionalized Design and Angiogenic Skin Regeneration [J]. Journal of Inorganic Materials, 2025, 40(8): 921-932. |
| [9] | WANG Yutong, CHANG Jiang, XU He, WU Chengtie. Advances in Silicate Bioceramic/Bioglass for Wound Healing: Effects, Mechanisms and Application Ways [J]. Journal of Inorganic Materials, 2025, 40(8): 911-920. |
| [10] | MA Wenping, HAN Yahui, WU Chengtie, LÜ Hongxu. Application of Inorganic Bioactive Materials in Organoid Research [J]. Journal of Inorganic Materials, 2025, 40(8): 888-900. |
| [11] | LUO Xiaomin, QIAO Zhilong, LIU Ying, YANG Chen, CHANG Jiang. Inorganic Bioactive Materials Regulating Myocardial Regeneration [J]. Journal of Inorganic Materials, 2025, 40(8): 871-887. |
| [12] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
| [13] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
| [14] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
| [15] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||