Journal of Inorganic Materials
QIAN Xinyu1, WANG Wudi1, GUO Junyao1, REN Yongchun1, DONG Jianshu1, WANG Qingguo1, TANG Huili1, ZHANG Chenbo1, XU Xiaodong2, DONG Yongjun3, HUA Wei4, XU Jun1
Received:2025-09-02
Revised:2025-10-08
About author:QIAN Xinyu (1998-), male, PhD candidate. E-mail: 894742295@qq.com
Supported by:CLC Number:
QIAN Xinyu, WANG Wudi, GUO Junyao, REN Yongchun, DONG Jianshu, WANG Qingguo, TANG Huili, ZHANG Chenbo, XU Xiaodong, DONG Yongjun, HUA Wei, XU Jun. Spectroscopic Analysis of Ho:BaF₂ Crystals in the NIR to MIR Spectral Region[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250349.
| [1] ARSLANOV D D, SPUNEI M, MANDON J,et al. Continuous-wave optical parametric oscillator based infrared spectroscopy for sensitive molecular gas sensing. Laser Photonics Reviews, 2013, 7(2): 188. [2] GODARD A.Infrared (2-12 μm) solid-state laser sources: a review.Comptes Rendus Physique, 2007, 8(10): 1100. [3] SCHIFF H I, MACKAY G I, BECHARA J.The use of tunable diode laser absorption spectroscopy for atmospheric measurements.Research on chemical intermediates, 1994, 20(3): 525. [4] YUAN W, FANG R, XU H,et al. Red light pumped Ho3+: YLF laser at 1195.8 nm. Optics & Laser Technology, 2023, 167: 109784. [5] WANG J, ZHU X, MA Y,et al. Compact CNT mode-locked Ho3+-doped fluoride fiber laser at 1.2 μm. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 24(3): 1. [6] VESELSKÝ K, LOIKO P, EREMEEV K,et al. Broadly tunable continuous-wave Tm, Ho: SrF2 and Tm, Ho: BaF2 lasers. Optics Letters, 2024, 49(19): 5631. [7] WANG S, ZHANG J, XU N,et al. 2.9 µm lasing from a Ho3+/Pr3+ co-doped AlF3-based glass fiber pumped by a 1150 nm laser. Optics letters, 2020, 45(5): 1216. [8] REN Y, DONG J, WANG W,et al. Crystal growth and spectroscopic analysis of Ho, Pr: BaF2 crystal for 3 μm mid-infrared emission. Journal of Luminescence, 2024, 275: 120743. [9] SCHNEIDE J, CARBONNIER C, UNRAU U B.Characterization of a Ho3+-doped fluoride fiber laser with a 3.9-μm emission wavelength.Applied Optics, 1997, 36(33): 8595. [10] XUE G, ZHANG B, YIN K, et al. All-fiber Wavelength-tunable Tm/Ho-codoped Laser between 1727 nm and 2030 nm. International Symposium on High-Power Laser Systems and Applications 2014. SPIE, 2015, 9255: 178. [11] STONEMAN R C, ESTEROWITZ L.Intracavity-pumped 2.09-μ m Ho: YAG laser.Optics letters, 1992, 17(10): 736. [12] NEWBURGH G A, WORD-DANIELS A, MICHAEL A,et al. Resonantly diode-pumped Ho3+: Y2O3 ceramic 2.1 µm laser. Optics Express, 2011, 19(4): 3604. [13] CLERICI M, PECCIANTI M, SCHMIDT B E,et al. Wavelength scaling of terahertz generation by gas ionization. Physical Review Letters, 2013, 110(25): 253901. [14] PETROV V.Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals.Progress in Quantum Electronics, 2015, 42: 1. [15] SMOLSKI V O, YANG H, GORELOV S D,et al. Coherence properties of a 2.6-7.5 μm frequency comb produced as a subharmonic of a Tm-fiber laser. Optics letters, 2016, 41(7): 1388. [16] PAYNE S A, CAIRD J A, CHASE L L,et al. Spectroscopy and gain measurements of Nd3+ in SrF2 and other fluorite-structure hosts. Journal of the Optical Society of America B, 1991, 8(4): 726. [17] CHEN X, WU Y.High concentration Ce3+ doped BaF2 transparent ceramics.Journal of Alloys and Compounds, 2020, 817: 153075. [18] NICOARA I, STEF M.Charge compensating defects study of YbF3‐doped BaF2 crystals using dielectric loss.Physica Status Solidi (B), 2016, 253(2): 397. [19] KENBAYEV D, SOROKIN M V, EL-SAID A S,et al. Creation and stability of color centers in BaF2 single crystals irradiated with swift 132Xe ions. Crystals, 2025, 15(9): 785. [20] ZHANG Q L, YIN S T, SUN D L,et al. Segregation during crystal growth from melt and absorption cross section determination by optical absorption method. Science in China Series G: Physics, Mechanics and Astronomy, 2008, 51(5): 481. [21] ZVESELSKÝ K, LOIKO P, EREMEEV K,et al. Broadly tunable continuous-wave Tm, Ho: SrF2 and Tm, Ho: BaF2 lasers. Optics Letters, 2024, 49(19): 5631. [22] QIAN X, ZHANG N, WANG W,et al. Spectroscopic characterization and efficient tunable lasers of Ho: BaF2 single crystals. Chinese Optics Letters, 2025, 23(7): 071403. [23] CAO R, LU Y, TIAN Y,et al. 2 μm emission properties and nonresonant energy transfer of Er3+ and Ho3+ codoped silicate glasses. Scientific Reports, 2016, 6(1): 37873. [24] ORLOVSKII Y V, BASIEV T T, PUKHOV K K,et al. Low-phonon BaF2: Ho3+, Tm3+ doped crystals for 3.5-4 μm lasing. Optical Materials, 2010, 32(5): 599. [25] 王无敌. 镨离子掺杂碱土/稀土氟化物晶体生长、局域结构与发光性能研究. 上海: 同济大学, 2024. [26] HAYES W, LAMBOURN K F.Production of F and F‐Aggregate Centres in CaF2 and SrF2 by Irradiation.Physica Status Solidi (B), 1973, 57(2): 693. [27] MA F K, ZHANG Z, JIANG D P,et al. Neodymium cluster evolution in fluorite laser crystal: a combined DFT and synchrotron X-ray absorption fine structure study. Crystal Growth & Design, 2022, 22(7): 4480. [28] JUDD B R.Optical absorption intensities of rare-earth ions.Physical Review, 1962, 127(3): 750. [29] OFELT G S.Intensities of crystal spectra of rare‐earth ions.The Journal of Chemical Physics, 1962, 37(3): 511. [30] YANG C, LIU J, WANG Z,et al. Enhanced 2.8 μm emission of Ho, Pr: CaYAlO4 crystal. Optical Materials, 2024, 152: 115407. [31] ŠULC J, NĚMEC M, VYHLÍDAL D, et al. Holmium Doping Concentration Influence on Ho: YAG Crystal Spectroscopic Properties. Solid State Lasers XXX: Technology and Devices. SPIE, 2021, 11664: 105. [32] ŠULC J, NĚMEC M, JELÍNEK M, et al. Anisotropy of Spectroscopic and Laser Properties of Ho: YAP Crystal. Solid State Lasers XXXI: Technology and Devices. SPIE, 2022, 11980: 74. [33] WALSH B M, BARNES N P, DI BARTOLO B.Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4.Journal of Applied Physics, 1998, 83(5): 2772. [34] WALSH B M, GREW G W, BARNES N P.Energy levels and intensity parameters of Ho3+ ions in GdLiF4, YLiF4 and LuLiF4.Journal of Physics: Condensed Matter, 2005, 17(48): 7643. [35] YANG F, TU C, WANG H,et al. Growth and spectroscopy of ZnWO4: Ho3+ crystal. Journal of Alloys and Compounds, 2008, 455(1/2): 269. [36] IKONNIKOV D A, MALAKHOVSKII A V, SUKHACHEV A L,et al. Spectroscopic properties of HoAl3(BO3)4 single crystal. Optical Materials, 2014, 37: 257. [37] HU D, DONG J, TIAN J,et al. Crystal growth, spectral properties and Judd-Ofelt analysis of Ho: GdScO3 crystal. Journal of Luminescence, 2021, 238: 118243. [38] YANG C, LIU J, WANG Z,et al. Enhanced 2.8 μm emission of Ho, Pr:CaYAlO4 crystal. Optical Materials, 2024, 152: 115407. [39] OSIAC E, SOKÓLSKA I, KÜCK S. Evaluation of the upconversion mechanisms in Ho3+-doped crystals: Experiment and theoretical modeling.Physical Review B, 2002, 65(23): 235119. [40] CAPOBIANCO J A, BOYER J C, VETRONE F, et al. Optical spectroscopy and upconversion studies of Ho3+-doped bulk and nanocrystalline Y2O3. Chemistry of Materials, 2002, 14(7): 2915. [41] 董建树. Ho3+离子掺杂激光晶体的生长与光谱性能研究. 上海: 同济大学, 2022. [42] CHEN M, SHIRAKAWA A, OLAUSSON C B,et al. 87 W, narrow-linewidth, linearly-polarized 1178 nm photonic bandgap fiber amplifier. Optics Express, 2015, 23(3): 3134. [43] SONG Q, ZHANG N, LIU J,et al. Efficient continuous wave and broad tunable lasers with the Tm:GdScO3 crystal. Optics Letters, 2023, 48(3): 640. [44] DIENING A, KÜCK S. Spectroscopy and diode-pumped laser oscillation of Yb3+, Ho3+-doped yttrium scandium gallium garnet.Journal of Applied Physics, 2000, 87(9): 4063. [45] DRIESEN K, TIKHOMIROV V K, GÖRLLER-WALRAND C,et al. Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission. Applied Physics Letters, 2006, 88(7): 073111. [46] ZHAO Z, LIU C, XIA M,et al. Intense~ 1.2 μm emission from Ho3+/Y3+ ions co-doped oxyfluoride glass-ceramics containing BaF2 nanocrystals. Journal of Alloys and Compounds, 2017, 701: 392. [47] PAYNE S A, CHASE L L, SMITH L K,et al. Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+. IEEE Journal of Quantum Electronics, 1992, 28(11): 2619. [48] ZHOU Y, CHEN J, DONG L,et al. Growth and spectroscopic properties of Yb-Ho co-doped CNGG crystal. Optical Materials, 2021, 114: 110998. [49] HU D, DONG J, TIAN J,et al. Crystal growth, spectral properties and Judd-Ofelt analysis of Ho:GdScO3 crystal. Journal of Luminescence, 2021, 238: 118243. [50] WANG Y H, LI Z, YIN H,et al. Enhanced ~3 μm mid-infrared emissions of Ho3+ via Yb3+ sensitization and Pr3+ deactivation in Lu3Al5O12 crystal. Optical Materials Express, 2018, 8(7): 1882. [51] ZHAO C C, HANG Y, ZHANG L H,et al. Polarized spectroscopic properties of Ho3+-doped LuLiF4 single crystal for 2 μm and 2.9 μm lasers. Optical Materials, 2011, 33(11): 1610. [52] ZHANG P X, YIN J G, ZHANG B T,et al. Intense 2.8 μm emission of Ho3+ doped PbF2 single crystal. Optics Letters, 2014, 39(13): 3942. [53] MISHRA A, FRECHERO M A, CARON A,et al. Recent progress and future directions in nanoglass materials: a deep insight into synthesis, characterization, and application. Nanotechnology and Precision Engineering, 2025, 8(1): 015002. [54] VEBER A, LU Z, VERMILLAC M,et al. Nano-structured optical fibers made of glass-ceramics, and phase separated and metallic particle-containing glasses. Fibers, 2019, 7(12): 105. [55] POPOV P A, SIDOROV А А, KUL’CHENKOV Е А,et al. Thermal conductivity and expansion of PbF2 single crystals. Ionics, 2017, 23(1): 233. |
| [1] | ZHANG Haifeng, JIANG Meng, SUN Tingting, WANG Lianjun, JIANG Wan. Preparation of p-type GeMnTe2 Based Thermoelectric Materials with Stable Cubic Phase [J]. Journal of Inorganic Materials, 2025, 40(11): 1245-1251. |
| [2] | LI Chengming, ZHOU Chuang, LIU Peng, ZHENG Liping, LAI Yongji, CHEN Liangxian, LIU Jinlong, WEI Junjun. Stress in CVD Diamond Films: Generation, Suppression, Application, and Measurement [J]. Journal of Inorganic Materials, 2025, 40(11): 1188-1200. |
| [3] | WU Mingxuan, LI Junjie, CHEN Shuo, YAN Yonggao, SU Xianli, ZHANG Qingjie, TANG Xinfeng. Homogeneity of Zone-melted n-type Bi1.96Sb0.04Te2.70Se0.30 Thermoelectric Material [J]. Journal of Inorganic Materials, 2025, 40(11): 1252-1260. |
| [4] | YUAN Long, JIA Ru, YUAN Meng, ZHANG Jian, DUAN Yu, MENG Xiangdong. Mechanism and Application of X-ray Induced Photochromic Materials: A Review [J]. Journal of Inorganic Materials, 2025, 40(10): 1097-1110. |
| [5] | AI Yizhaotong, REN Jiulong, QIANG Linya, ZHANG Xiaozhen, YANG Kai, GAO Yanfeng. Friction and Wear Properties of Al2O3-GdAlO3 (GAP) Amorphous Ceramic Coatings under High Load Capacity [J]. Journal of Inorganic Materials, 2025, 40(10): 1111-1118. |
| [6] | CAO Luhan, MENG Jia, XUE Yudong, SHENG Xiaochen, CUI Yuanyuan, LE Jun, SONG Lixin. Effect of SiC Transition Layer on Bonding Properties of MoSi2-SABB Coating on SiC/SiC Ceramic Matrix Composites [J]. Journal of Inorganic Materials, 2025, 40(10): 1119-1128. |
| [7] | WAN Xinyi, WANG Wenqi, LI Jiacheng, ZHAO Junliang, MA Dongyun, WANG Jinmin. Colorless/Black Switching Electrochromic Device Based on WO3·xH2O and Reversible Metal Electrodeposition [J]. Journal of Inorganic Materials, 2025, 40(10): 1163-1174. |
| [8] | ZHAO Lihua, WANG Yanshuai, YIN Xinwu, MAO Yeqiong, NIU Dechao. Bismuth Sulfide Nanoclusters-loaded Silica-based Hybrid Micelles: Preparation and Photothermal Antibacterial Property [J]. Journal of Inorganic Materials, 2025, 40(10): 1129-1136. |
| [9] | WU Huaxin, ZHANG Qihao, YAN Haixue, WANG Lianjun, JIANG Wan. Optimization of Thermoelectric Transport Properties in Nanocomposite MgAgSb-based Alloys [J]. Journal of Inorganic Materials, 2025, 40(9): 997-1004. |
| [10] | WANG Liangjun, OUYANG Yuzhao, ZHAO Junliang, YANG Chang. Cu-Mn-I Solid Solution Thin Films: Preparation and Control of p-type Transparent Conductive Properties [J]. Journal of Inorganic Materials, 2025, 40(9): 1022-1028. |
| [11] | YU Shengyang, SU Haijun, JIANG Hao, YU Minghui, YAO Jiatong, YANG Peixin. A Review of Pore Defects in Ultra-high Temperature Oxide Ceramics by Laser Additive Manufacturing: Formation and Suppression [J]. Journal of Inorganic Materials, 2025, 40(9): 944-956. |
| [12] | LI Tingsong, WANG Wenli, LIU Qiang, WANG Yanbin, ZHOU Zhenzhen, HU Chen, LI Jiang. Influence of Cr3+ Doping Concentration on the Persistent Performance of YAGG:Ce3+,Cr3+ Luminescent Ceramics [J]. Journal of Inorganic Materials, 2025, 40(9): 1037-1044. |
| [13] | MA Jingge, WU Chengtie. Application of Inorganic Bioceramics in Promoting Hair Follicle Regeneration and Hair Growth [J]. Journal of Inorganic Materials, 2025, 40(8): 901-910. |
| [14] | ZHANG Hongjian, ZHAO Ziyi, WU Chengtie. Inorganic Biomaterials on Regulating Neural Cell Function and Innervated Tissue Regeneration: A Review [J]. Journal of Inorganic Materials, 2025, 40(8): 849-859. |
| [15] | MA Wenping, HAN Yahui, WU Chengtie, LÜ Hongxu. Application of Inorganic Bioactive Materials in Organoid Research [J]. Journal of Inorganic Materials, 2025, 40(8): 888-900. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||