Journal of Inorganic Materials
WAN Xinyi1, WANG Wenqi1, LI Jiacheng1, ZHAO Junliang2, MA Dongyun1, WANG Jinmin1
Received:
2025-01-13
Revised:
2025-03-03
About author:
WAN Xinyi (2000-), female, master candidate. E-mail: 222143048@st.usst.edu.cn
WAN Xinyi, WANG Wenqi, LI Jiacheng, ZHAO Junliang, MA Dongyun, WANG Jinmin. Colorless/Black Switching Electrochromic Device Based on WO3·xH2O and Reversible Metal Electrodeposition[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250017.
[1] KHANDEKAR M L, MURTY T S, CHITTIBABU P.The global warming debate: a review of the state of science.Pure Appl. Geophys., 2005, 162(8/9): 1557. [2] GRANQVIST C G.Transparent conductors as solar energy materials: a panoramic review.Sol. Energy Mater. Sol. Cells, 2007, 91(15): 1529. [3] SUMBOJA A, LIU J M, ZHENG W G, et al. Electrochemical energy storage devices for wearable technology: a rationale for materials selection and cell design. Chem. Soc. Rev., 2018, 47(15): 5919. [4] KIM H, SON M, AHN S H, et al. Comparison of electrochromic characteristics of electrochromic device upon various sintering methods of sol-gel based WO3 electrode. Curr. Appl. Phys., 2020, 20(6): 782. [5] EH A L S, TAN A W M, CHENG X,et al. Recent advances in flexible electrochromic devices: prerequisites, challenges, and prospects. Energy Technol., 2018, 6(1): 33. [6] ZHANG R C, ZHANG Z B, HAN J C, et al. Advanced liquid crystal-based switchable optical devices for light protection applications: principles and strategies. Light Sci. Appl., 2023, 12(1): 11. [7] GLOGIC E, FUTSCH R, THENOT V,et al. Development of eco-efficient smart electronics for anticounterfeiting and shock detection based on printable inks. ACS Sustain. Chem. Eng., 2021, 9(35): 11691. [8] WANG J L, LIU J W, SHENG S Z, et al. Manipulating nanowire assemblies toward multicolor transparent electrochromic device. Nano Lett., 2021, 21(21): 9203. [9] ALCARAZ G K A, JUAREZ-ROLON J S, BURPEE N A,et al. Thermally-stable dynamic windows based on reversible metal electrodeposition from aqueous electrolytes. J. Mater. Chem. C, 2018, 6(8): 2132. [10] ARAKI S, NAKAMURA K, KOBAYASHI K, et al. Electrochemical optical‐modulation device with reversible transformation between transparent, mirror, and black. Adv. Mater., 2012, 24(23): 122. [11] EH A L S, CHEN J, ZHOU X,et al. Robust trioptical-state electrochromic energy storage device enabled by reversible metal electrodeposition. ACS Energy Lett., 2021, 6(12): 4328. [12] ZIEGLER J P.Status of reversible electrodeposition electrochromic devices.Sol. Energy Mater. Sol. Cells, 1999, 56(3/4): 477. [13] LAIK B, CARRIÈRE D, TARASCON J M. Reversible electrochromic system based on aqueous solution containing silver.Electrochim. Acta, 2001, 46(13/14): 2203. [14] BARILE C J, SLOTCAVAGE D J, HOU J Y, et al. Dynamic windows with neutral color, high contrast, and excellent durability using reversible metal electrodeposition. Joule, 2017, 1(1): 133. [15] BARILE C J.Electrolyte dynamics in reversible metal electrodeposition for dynamic windows.J. Appl. Electrochem., 2018, 48(4): 443. [16] HOWARD B M, ZIEGLER J P.Optical properties of reversible electrodeposition electrochromic materials.Sol. Energy Mater. Sol. Cells, 1995, 39(2/3/4): 309. [17] ISLAM S M, FINI C N, BARILE C J.Dynamic windows based on reversible metal electrodeposition with enhanced functionality.J. Electrochem. Soc., 2019, 166(8): D333. [18] JEONG K R, LEE I, PARK J Y,et al. Enhanced black state induced by spatial silver nanoparticles in an electrochromic device. NPG Asia Mater., 2017, 9: e362. [19] LUO G, SHEN L Y, ZHENG J M, et al. A europium ion doped WO3 film with the bi-functionality of enhanced electrochromic switching and tunable red emission. J. Mater. Chem. C, 2017, 5(14): 3488. [20] DOV N E, SHANKAR S, COHEN D, et al. Electrochromic metallo-organic nanoscale films: fabrication, color range, and devices. J. Am. Chem. Soc., 2017, 139(33): 11471. [21] ASSIS L M N, LEONES R, KANICKI J, et al. Prussian blue for electrochromic devices. J. Electroanal. Chem., 2016, 777: 33. [22] ZHI M Y, HUANG W X, SHI Q W,et al. Enhanced electrochromic performance of vanadium pentoxide/reduced graphene oxide nanocomposite film prepared by the Sol-Gel method. J. Electrochem. Soc., 2016, 163(10): H891. [23] QIU M J, SUN P, ZHANG B,et al. Reliable information encryption and digital display applications based on multistate smart windows. Adv. Opt. Mater., 2018, 6(22): 1800338. [24] SUI C X, PU J K, CHEN T H, et al. Dynamic electrochromism for all-season radiative thermoregulation. Nat. Sustain., 2023, 6(4): 428. [25] JIA Z F, SUI Y M, QIAN L, et al. Electrochromic windows with fast response and wide dynamic range for visible-light modulation without traditional electrodes. Nat. Commun., 2024, 15: 6110. [26] ZHANG Y X, XU B, HUANG B K,et al. Color-neutral smart window enabled by gradient reversible alloy deposition. ACS Energy Lett., 2024, 9(8): 4162. [27] NGUYEN T V, DO H, GUO W W,et al. Tungsten oxide-modified ITO electrode for electrochromic window based on reversible metal electrodeposition. Electron. Mater. Lett., 2022, 18(1): 36. [28] SHENG K, XUE B, ZHENG J M, et al. A transparent to opaque electrochromic device using reversible Ag deposition on PProDOT-Me2 with robust stability. Adv. Opt. Mater., 2021, 9(11): 2002149. [29] ZHANG X Q, SUI Y M, YEASMIN S,et al. Fast-Switching electrochromic device enabled by Fe2+-mediated MnO2/Mn2+ redox reactions. ACS Appl. Electron. Mater., 2024, 6(11): 8163. [30] EVANS R C, AUSTIN R, MILLER R C,et al. Surface-facet-dependent electrochromic properties of WO3 nanorod thin films: implications for smart windows. ACS Appl. Nano Mater., 2021, 4(4): 3750. [31] LI Y Q, MCMASTER W A, WEI H,et al. Enhanced electrochromic properties of WO3 nanotree-like structures synthesized via a two-step solvothermal process showing promise for electrochromic window application. ACS Appl. Nano Mater., 2018, 1(6): 2552. [32] ZHOU Z Q, CHEN Z, MA D Y,et al. Porous WO3·2H2O film with large optical modulation and high coloration efficiency for electrochromic smart window. Sol. Energy Mater. Sol. Cells, 2023, 253: 112226. [33] ISLAM S M, HERNANDEZ T S, MCGEHEE M D,et al. Hybrid dynamic windows using reversible metal electrodeposition and ion insertion. Nat. Energy, 2019, 4(3): 223. [34] HERNANDEZ T S, BARILE C J, STRAND M T, et al. Bistable black electrochromic windows based on the reversible metal electrodeposition of Bi and Cu. ACS Energy Lett., 2018, 3(1): 104. [35] EH A L S, LIN M F, CUI M Q,et al. A copper based reversible electrochemical mirror device with switchability between transparent, blue, and mirror states. J. Mater. Chem. C, 2017, 5(26): 6547. [36] GUPTA S, SINGH R, ANOOP M D,et al. Electrochemical sensor for detection of mercury (II) ions in water using nanostructured bismuth hexagons. Appl. Phys. A, 2018, 124(11): 737. [37] ZHANG C, LI S, WU R,et al. Robust MnO2-WO3 complementary electrochromic device enabled by reversible electrodeposition of MnO2. Nano Lett., 2024 24(51): 16360. [38] YUAN Y L, LU Y D, JIA B E, et al. Integrated system of solar cells with hierarchical NiCo2O4 battery-supercapacitor hybrid devices for self-driving optical-emitting diodes. Nano-Micro Lett., 2019, 11(1): 42. [39] SUN J W, WAN X Y, YANG T, et al. High-performance tungsten-niobium bimetallic oxide films with designable electrochromic properties. Sol. Energy Mater. Sol. Cells, 2023, 256: 112318. [40] CHO S M, KIM S, KIM T Y,et al. New switchable mirror device with a counter electrode based on reversible electrodeposition. Sol. Energy Mater. Sol. Cells, 2018, 179: 161. [41] TAO X, LIU D Q, LIU T W, et al. A bistable variable infrared emissivity device based on reversible silver electrodeposition. Adv. Funct. Mater., 2022, 32(32): 2202661. [42] PENG Y C, FAN L L, JIN W L,et al. Coloured low-emissivity films for building envelopes for year-round energy savings. Nat. Sustain., 2021, 5(4): 339. |
[1] | ZHEN Mingshuo, LIU Xiaoran, FAN Xiangqian, ZHANG Wenping, YAN Dongdong, LIU Lei, LI Chen. Electrochromic Intelligent Visual Humidity Indication System [J]. Journal of Inorganic Materials, 2024, 39(4): 432-440. |
[2] | FENG Xingzhe, MA Dongyun, WANG Jinmin. Porous NiMn-LDH Nanosheets Film: Solvothermal Growth and Electrochromic Properties [J]. Journal of Inorganic Materials, 2024, 39(12): 1391-1396. |
[3] | NIU Haibin, HUANG Jiahui, LI Qianwen, MA Dongyun, WANG Jinmin. Directly Hydrothermal Growth and Electrochromic Properties of Porous NiMoO4 Nanosheet Films [J]. Journal of Inorganic Materials, 2023, 38(12): 1427-1433. |
[4] | SUN Jiawei, WAN Xinyi, YANG Ting, MA Dongyun, WANG Jinmin. Preparation and Electrochromic Properties of Ti2Nb10O29 Films [J]. Journal of Inorganic Materials, 2023, 38(12): 1434-1440. |
[5] | CHEN Zhang, ZHAO Ruoyi, HAN Shaojie, WANG Huanran, YANG Qun, GAO Yanfeng. Electrochromic WO3 Thin Films: Preparation by Nanocrystalloid Liquid Phase Coating and Performance Optimization [J]. Journal of Inorganic Materials, 2023, 38(11): 1355-1363. |
[6] | HUANG Zhihang, TENG Guanhongwei, TIE Peng, FAN Desong. Electrochromic Property of Perovskite Ceramic Films [J]. Journal of Inorganic Materials, 2022, 37(6): 611-616. |
[7] | ZHANG Xiang, LI Wenjie, WANG Lebin, CHEN Xi, ZHAO Jiupeng, LI Yao. Reflective Property of Inorganic Electrochromic Materials [J]. Journal of Inorganic Materials, 2021, 36(5): 451-460. |
[8] | WANG Tianyue, WANG Mengying, HUANG Qingjiao, YANG Jiaming, WANG Shunhua, DIAO Xungang. Preparation of Lithium Titanate Thin Film for Electrochromic Smart Window by Sol-Gel Spin Coating Method [J]. Journal of Inorganic Materials, 2021, 36(5): 471-478. |
[9] | JIA Hanxiang, SHAO Zewei, HUANG Aibin, JIN Pingshi, CAO Xun. Sandwich Structured Electrolyte of High Sputtering Efficiency for All-solid-state Electrochromic Devices by Optical Design [J]. Journal of Inorganic Materials, 2021, 36(5): 479-484. |
[10] | ZHONG Xiaolan, LIU Xueqing, DIAO Xungang. Electrochromic Devices Based on Tungsten Oxide and Nickel Oxide: a Review [J]. Journal of Inorganic Materials, 2021, 36(2): 128-139. |
[11] | ZHAO Qi, QIAO Ke, YAO Yongji, CHEN Zhang, CHEN Dongchu, GAO Yanfeng. High-conductivity Hydrophobic Fumed-SiO2 Composite Gel Electrolyte for High Performance Electrochromic Devices [J]. Journal of Inorganic Materials, 2021, 36(2): 161-167. |
[12] | ZHOU Kailing, WANG Hao, ZHANG Qianqian, LIU Jingbing, YAN Hui. Dynamic Process of Ions Transport and Cyclic Stability of WO3 Electrochromic Film [J]. Journal of Inorganic Materials, 2021, 36(2): 152-160. |
[13] | FANG Huajing, ZHAO Zetian, WU Wenting, WANG Hong. Progress in Flexible Electrochromic Devices [J]. Journal of Inorganic Materials, 2021, 36(2): 140-151. |
[14] | JIA Hanxiang, CAO Xun, JIN Pingshi. Advances in Inorganic All-solid-state Electrochromic Materials and Devices [J]. Journal of Inorganic Materials, 2020, 35(5): 511-524. |
[15] | CHEN Jun,MA Pei-Hua,ZHANG Cheng,Laurent RUHLMANN,LYU Yao-Kang. Preparation and Electrochemical Property of New Multifunctional Inorganic/Organic Composite Film [J]. Journal of Inorganic Materials, 2020, 35(2): 217-223. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||