Journal of Inorganic Materials
PENG Dezhao1,2, LI Rui1,2, WANG Wenhong1,2, WANG Zirui1,2, ZHANG Zhizhen1,2
Received:2025-07-19
Revised:2025-09-17
Contact:
ZHANG Zhizhen, Associate Professor. E-mail: zhangzhzh28@mail.sysu.edu.cn
About author:PENG Dezhao, PhD candidate. E-mail: pengdzh5@mail2.sysu.edu.cn
Supported by:CLC Number:
PENG Dezhao, LI Rui, WANG Wenhong, WANG Zirui, ZHANG Zhizhen. Research Progress of Sodium Chloride Solid Electrolytes[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250307.
| [1] GOODENOUGH J B.Evolution of strategies for modern rechargeable batteries.Acc. Chem. Res., 2013, 46(5): 1053. [2] GOODENOUGH J B, KIM Y.Challenges for rechargeable Li batteries.Chem. Mater., 2009, 22(3): 587. [3] XU J, CAI X, CAI S, et al. High-energy lithium-ion batteries: recent progress and a promising future in applications. Energy Environ. Mater., 2023, 6(5): 35. [4] GAO Y L, PAN Z H, SUN J G, et al. High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett., 2022, 14(1): 94. [5] VAALMA C, BUCHHOLZ D, WEIL M, et al. A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater., 2018, 3(4): 3443. [6] KUNDU D, TALAIE E, DUFFORT V, et al. The emerging chemistry of sodium Ion batteries for electrochemical energy storage. Angew. Chem. Int. Ed., 2015, 54(11): 3431. [7] HAYASHI A, NOI K, SAKUDA A, et al. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nat. Commun., 2012, 3: 856. [8] CHE H, CHEN S, XIE Y, et al. Electrolyte design strategies and research progress for room-temperature sodium-ion batteries. Energy Environ Sci, 2017, 10(5): 1075. [9] SUN B, XIONG P, MAITRA U, et al. Design strategies to enable the efficient use of sodium metal anodes in high-energy batteries. Adv. Mater., 2019, 32(18): 1903891. [10] ZHANG X, LI L, FAN E, et al. Toward sustainable and systematic recycling of spent rechargeable batteries. Chem. Soc. Rev., 2018, 47(19): 7239. [11] YAO X, HUANG B, YIN J, et al. All-solid-state lithium batteries with inorganic solid electrolytes: review of fundamental science. Chin. Phys. B, 2016, 25(1): 018802. [12] HIRSH H S, LI Y, TAN D H S, et al. Sodium-ion batteries paving the way for grid energy storage. Adv. Energy Mater., 2020, 10(32): 2001274. [13] SAND S C, RUPP J L M, YILDIZ B. A critical review on Li-ion transport, chemistry and structure of ceramic-polymer composite electrolytes for solid state batteries.Chem. Soc. Rev., 2025, 54(1): 178. [14] JANEK J, ZEIER W G.A solid future for battery development.Nat. Energy, 2016, 1: 24. [15] MANTHIRAM A, YU X W, WANG S F.Lithium battery chemistries enabled by solid-state electrolytes.Nat. Rev. Mater., 2017, 2(4): 16103. [16] CHEN R, LI Q, YU X, et al. Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem. Rev., 2020, 120(14): 6820. [17] YU T, YANG X, YANG R, et al. Progress and perspectives on typical inorganic solid-state electrolytes. J. Alloys Compd., 2021, 885: 161013. [18] LU P, XIA Y, SUN G, et al. Realizing long-cycling all-solid-state Li-In||TiS2 batteries using Li6+xMxAs1-xS5I (M=Si, Sn) sulfide solid electrolytes. Nat. Commun., 2023, 14(1): 4077. [19] KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy., 2016, 1(4): 16030. [20] NIE X, HU J, LI C.Halide-based solid electrolytes: the history, progress, and challenges.Interdiscip. Mater., 2023, 2(3): 365. [21] WANG C, LIANG J, KIM J T, et al. Prospects of halide-based all-solid-state batteries: from material design to practical application. Sci. Adv., 2022, 8(36): eadc9516. [22] WANG Q, ZHOU Y, WANG X, et al. Designing lithium halide solid electrolytes. Nat. Commun., 2024, 15(1): 1050. [23] ASANO T, SAKAI A, OUCHI S, et al. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries. Adv. Mater., 2018, 30(44): e1803075. [24] WEI Z, NAZAR L F, JANEK J.Emerging halide solid electrolytes for sodium solid-state batteries: structure, conductivity, paradigm of applications.Batteries Supercaps, 2024, 7(7): e202400005 [25] LI X N, LIANG J W, YANG X F, et al. Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries. Energy. Environ. Sci., 2020, 13(5): 1429. [26] TUO K, SUN C W, LIU S Q.Recent progress in and perspectives on emerging halide superionicconductors for all-solid-state batteries.Electrochem. Energy Rev., 2023, 6(1): 17. [27] HUANG L J, ZHANG L, BI J Y, et al. An insight into halide solid-state electrolytes: progress and modification strategies. Energy Mater. Adv., 2024, 5: 35632. [28] LIANG J, LI X, ADAIR K R, et al. Metal halide superionic conductors for all-solid-state batteries. Acc. Chem. Res., 2021, 54(4): 1023. [29] KWAK H, WANG S, PARK J, et al. Emerging halide superionic conductors for all-solid-state batteries: design, synthesis, and practical applications. ACS Energy Lett., 2022, 7(5): 1776. [30] KWAK H, LYOO J, PARK J, et al. Na2ZrCl6 enabling highly stable 3 V all-solid-state Na-ion batteries. Energy Storage Mater., 2023, 37: 47-54. [31] ZHAO T, SOBOLEV A N, SCHLEM R, et al. Synthesis-controlled cation solubility in solid sodium ion conductors Na2+xZr1-xInxCl6. ACS Appl. Energy Mater., 2023, 6(8): 4334. [32] SEBTI E, QI J, RICHARDSON P M, et al. Synthetic control of structure and conduction properties in Na-Y-Zr-Cl solid electrolytes. J. Mater. Chem. A, 2022, 10(40): 21565. [33] STEINER H-J, LUTZ H D.Neue schnelle Ionenleiter vom Typ M13M2Cl6 (M1=Li, Na, Ag; M2=In, Y).Z. Anorg. Allg. Chem., 1992, 613(7): 26. [34] SCHLEM R, BANIK A, ECKARDT M, et al. Na3-xEr1-xZrxCl6-a halide-based fast sodium-ion conductor with vacancy-driven ionic transpor. ACS Appl. Energy Mater., 2020, 3(10): 10164. [35] WU E A, BANERJEE S, TANG H, et al. A stable cathode-solid electrolyte composite for high-voltage, long-cycle-life solid-state sodium-ion batteries. Nat. Commun., 2021, 12(1): 1256. [36] WU M, LIU X, LIU H, et al. Fluorinated amorphous halides with improved ionic conduction and stability for all-solid-state sodium-ion batteries. Nat. Commun., 2025, 16(1): 2808. [37] HU Y, FU J, XU J, et al. Superionic amorphous NaTaCl6 halide electrolyte for highly reversible all-solid-state Na-ion batteries. Matter, 2024, 7(3): 1018. [38] ZHAO T, SAMANTA B, DE IRUJO-LABALDE X M, et al. Sodium metal oxyhalides NaMOCl4(M=Nb, Ta) with high ionic conductivities. ACS Mater. Lett., 2024, 6(8): 3683. [39] LIN X, ZHANG S, YANG M, et al. A family of dual-anion-based sodium superionic conductors for all-solid-state sodium-ion batteries. Nat. Mater., 2024, 24(1): 83. [40] LIN X, ZHAO Y, WANG C, et al. A dual anion chemistry-based superionic glass enabling long-cycling all-solid-state sodium-ion batteries. Angew. Chem. Int. Ed., 2023, 13: e202314181. [41] KWAK H, KIM J S, HAN D, et al. Boosting the interfacial superionic conduction of halide solid electrolytes for all-solid-state batteries. Nat. Commun., 2023, 14(1): 2459. [42] BAENZIGER N C.The crystal structure of NaAlCl4.Acta Cryst., 1951, 4(3): 216. [43] PARK J, SON J P, KO W, et al. NaAlCl4: new halide solid electrolyte for 3 V stable cost-effective all-solid-state Na-ion batteries. ACS Energy Lett., 2022, 7(10): 3293. [44] HAFNER M, BIANCHINI M.Exploring cationic substitutions in the solid electrolyte NaAlCl4 with density functional theory.J. Phys. Chem. C Nano. Interfaces, 2024, 128(47): 19978. [45] GOODYEAR J, ALI S A D, STEIGMANN G A. The crystal structure of Na2MnCl4.Acta Cryst., 1971, B27(8): 1672. [46] LOON C J J, IJDO D J W. The crystal structure of Na6MnCl8 and Na2Mn3Cl8 and some isostructural compounds.Acta Cryst., 1975, B31(3): 770. [47] VAN LOON C J J, VISSER D. Chlorides with the chrysoberyl structure: Na2CoCl4 and Na2ZnCl4.Acta Cryst., 1977, B33(1): 188. [48] LUTZ H D, WUSSOW K, KUSKE P.Ionic conductivity, structural, IR and raman spectroscopic data of olivine, Sr2PbO4, and Na2CuF4 type lithium and sodium chlorides Li2ZnCl4 and Na2MCl4 (M = Mg, Ti, Cr, Mn, Co, Zn, Cd).Z Naturforsch., 1987, 42b(11): 1379. [49] GUO H, HAFNER M, GRUNINGER H, et al. Structure and ionic conductivity of halide solid electrolytes based on NaAlCl4 and Na2ZnCl4. Adv. Sci., 2025, 12(30): e07224. [50] SADOWAY D R, FLENGAS S N.The synthesis and properties of the hexachloroniobates and hexachlorotantalates of Na, K, Rb, and Cs.Can. J. Chem., 1978, 56(15): 2013. [51] HENKE H.Zur kristallchemischen einordnung von NaSbCl6, NaNbCl6 und NaTaCl6.Z. Krist.-cryst. Mater., 1992, 198(1/2): 1. [52] LI R, XU K Q, WEN S H, et al. A sodium superionic chloride electrolyte driven by paddle wheel mechanism for solid state batteries. Nat. Commun., 2025, 16(1): 6633. [53] KIPOUROS G J, FLENGAS S N.Equilibrium decomposition pressures of the compounds Na2ZrCl6 and Na2HfCl6.Can. J. Chem., 1981, 59(6): 990. [54] ZHAO T, SOBOLEV A N, MARTINEZ DE IRUJO LABALDE X, et al. On the influence of the coherence length on the ionic conductivity in mechanochemically synthesized sodium-conducting halides, Na3-xIn1-xZrxCl6. J. Mater. Chem. A, 2024, 12(12): 7015. [55] ZHOU L, ZHANG S, LI W, et al. Amorphous-nanocrystalline fluorinated halide electrolytes with high ionic conductivity and high-voltage stability. J. Am. Chem. Soc., 2025, 147(18): 15136. [56] PARK D, KIM K, CHUN G H, et al. Materials design of sodium chloride solid electrolytes Na3MCl6 for all-solid-state sodium-ion batteries. J. Mater. Chem. A, 2021, 9(40): 23037. [57] YU S, KIM K, WOOD B C, et al. Structural design strategies for superionic sodium halide solid electrolytes. J. Mater. Chem. A, 2022, 10(45): 24301. [58] NIU X, DOU X, FU C, et al. Sodium halide solid state electrolyte of Na3YBr6 with low activation energy. RSC Adv., 2024, 14(21): 14716. [59] RIDLEY P, NGUYEN L H B, SEBTI E, et al. Amorphous and nanocrystalline halide solid electrolytes with enhanced sodium-ion conductivity. Matter, 2024, 7(2): 485. [60] LUO J D, ZHANG Y, CHENG X, et al. Halide superionic conductors with non-close-packed anion frameworks. Angew. Chem. Int. Ed., 2024, 63(17): e202400424. [61] LISSNER F, KRÄMER K, SCHLEID T, et al. Die Chloride Na3xM2-xCl6(M=La, Sm) and NaM2Cl6, 1994, 620(3): 444. [62] WICKLEDER M S, MEYER G.Neue derivate des UCl3-typs: die chloride and bromide A(SrSm)Cl6, A(SrEu)Cl6 und A(BaLa)X6 (A=Na, Ag; X=Cl, Br).Z. Anorg. Allg. Chem., 1999, 624(10): 1577. [63] FU C, LI Y, XU W, et al. LaCl3-based sodium halide solid electrolytes with high ionic conductivity for all-solid-state batteries. Nat. Commun., 2024, 15(1): 5646. [64] DAI T, WU S Y, LU Y X, et al. Inorganic glass electrolytes with polymer-like viscoelasticity. Nat. Energy, 2023, 8(11): 1221. [65] MOTOHASHI K, TSUKASAKI H, MORI S, et al. Fast sodium-ion conducting amorphous oxychloride embedding nanoparticles. Chem. Mater., 2024, 36(19): 9914. [66] ZHOU L, BAZAK J D, LI C, et al. 4 V Na solid state batteries enabled by a scalable sodium metal oxyhalide solid electrolyte. ACS Energy Lett., 2024, 9(8): 4093. [67] LIANG C C.Conduction characteristics of the lithium iodide-aluminum oxide solid electrolytes.J. Electrochem. Soc., 1973, 120(10): 1289. [68] MERCIER R, MALUGANI J P, FAHYS B, et al. Superionic conduction in Li2S-P2S5-LiI-glasses. Solid State Ionics, 1981, 5: 663. [69] FU J, WANG S, WU D, et al. Halide heterogeneous structure boosting ionic diffusion and high-voltage stability of sodium superionic conductors. Adv. Mater., 2024, 36(3): e2308012. [70] YU Q, HU J, XU Y, et al. Mesoporous enhanced heterostructured halide solid electrolytes with high air stability and high abundance for sustainable sodium metal batteries. Angew. Chem. Int. Ed., 2025, 64(26): e202425503. [71] QIE Y, WANG S, FU S, et al. Yttrium-sodium halides as promising solid-state electrolytes with high ionic conductivity and stability for Na-ion batteries. J. Phys. Chem. Lett., 2020, 11(9): 3376. [72] PARK J, HAN D, SON J P, et al. Extending the electrochemical window of Na+ halide nanocomposite solid electrolytes for 5 V-class all-solid-state Na-ion batteries. ACS Energy Lett., 2024, 9(5): 2222. [73] GOODWIN L E, ZIEGLER M, TILL P, et al. Halide and sulfide electrolytes in cathode composites for sodium all-solid-state batteries and their stability. ACS Appl. Mater. Interfaces, 2024, 16(15): 19792. [74] DEYSHER G, CHEN Y T, SAYAHPOUR B, et al. Evaluating electrolyte-anode interface stability in sodium all-solid-state batteries. ACS Appl. Mater. Interfaces, 2022, 14(42): 47706. [75] ZHANG J, YU Z, ZHU Y, et al. Configuration design and interface reconstruction to realize the superior high-rate performance for sodium layered oxide cathodes. Adv. Energy Mater., 2025, 15(23). [76] ZHANG Z, ZHANG Q, SHI J, et al. A self-forming composite electrolyte for solid-state sodium battery with ultralong cycle life. Adv. Energy Mater., 2017, 7(4): 1601196. [77] DONG Z L, GAN Y, MARTINS V, et al. Novel sulfide-chloride solid-state electrolytes with tunable anion ratio for highly stable solid-state sodium-ion batteries. Adv. Mater., 2025, 37(30): e2503107. [78] XU J, LI Y, LU P, et al. Water-stable sulfide solid electrolyte membranes directly applicable in all-solid-state batteries enabled by superhydrophobic Li+-conducting protection layer. Adv. Energy Mater., 2021, 12(2): 2102348. |
| [1] | YU Shengyang, SU Haijun, JIANG Hao, YU Minghui, YAO Jiatong, YANG Peixin. A Review of Pore Defects in Ultra-high Temperature Oxide Ceramics by Laser Additive Manufacturing: Formation and Suppression [J]. Journal of Inorganic Materials, 2025, 40(9): 944-956. |
| [2] | WEN Shenhao, PENG Dezhao, LIN Zheyu, GUO Xia, HUANG Peixin, ZHANG Zhizhen. Interface Engineering for the Anode in Solid-state Lithium Batteries Based on LLZTO Electrolyte [J]. Journal of Inorganic Materials, 2025, 40(9): 1013-1021. |
| [3] | LIU Jiangping, GUAN Xin, TANG Zhenjie, ZHU Wenjie, LUO Yongming. Research Progress on Catalytic Oxidation of Nitrogen-containing Volatile Organic Compounds [J]. Journal of Inorganic Materials, 2025, 40(9): 933-943. |
| [4] | XIAO Xiaolin, WANG Yuxiang, GU Peiyang, ZHU Zhenrong, SUN Yong. Advances in Regulation of Damaged Skin Regeneration by Two-dimensional Inorganic Materials [J]. Journal of Inorganic Materials, 2025, 40(8): 860-870. |
| [5] | MA Jingge, WU Chengtie. Application of Inorganic Bioceramics in Promoting Hair Follicle Regeneration and Hair Growth [J]. Journal of Inorganic Materials, 2025, 40(8): 901-910. |
| [6] | ZHANG Hongjian, ZHAO Ziyi, WU Chengtie. Inorganic Biomaterials on Regulating Neural Cell Function and Innervated Tissue Regeneration: A Review [J]. Journal of Inorganic Materials, 2025, 40(8): 849-859. |
| [7] | AI Minhui, LEI Bo. Micro-nanoscale Bioactive Glass: Functionalized Design and Angiogenic Skin Regeneration [J]. Journal of Inorganic Materials, 2025, 40(8): 921-932. |
| [8] | WANG Yutong, CHANG Jiang, XU He, WU Chengtie. Advances in Silicate Bioceramic/Bioglass for Wound Healing: Effects, Mechanisms and Application Ways [J]. Journal of Inorganic Materials, 2025, 40(8): 911-920. |
| [9] | MA Wenping, HAN Yahui, WU Chengtie, LÜ Hongxu. Application of Inorganic Bioactive Materials in Organoid Research [J]. Journal of Inorganic Materials, 2025, 40(8): 888-900. |
| [10] | LUO Xiaomin, QIAO Zhilong, LIU Ying, YANG Chen, CHANG Jiang. Inorganic Bioactive Materials Regulating Myocardial Regeneration [J]. Journal of Inorganic Materials, 2025, 40(8): 871-887. |
| [11] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
| [12] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
| [13] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
| [14] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
| [15] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||