Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (6): 671-680.DOI: 10.15541/jim20240001
Special Issue: 【结构材料】热障与环境障涂层(202409)
• RESEARCH ARTICLE • Previous Articles Next Articles
LI Jie1,2(), LUO Zhixin1, CUI Yang1, ZHANG Guangheng1,2, SUN Luchao1(
), WANG Jingyang1(
)
Received:
2024-01-02
Revised:
2024-02-29
Published:
2024-06-20
Online:
2024-03-05
Contact:
SUN Luchao, professor. E-mail: lcsun@imr.ac.cn;About author:
LI Jie (1999-), female, PhD candidate. E-mail: jli20s@imr.ac.cn
Supported by:
CLC Number:
LI Jie, LUO Zhixin, CUI Yang, ZHANG Guangheng, SUN Luchao, WANG Jingyang. CMAS Corrosion Resistance of Y3Al5O12/Al2O3 Ceramic Coating Deposited by Atmospheric Plasma Spraying[J]. Journal of Inorganic Materials, 2024, 39(6): 671-680.
Current/A | Ar flow rate/slpm | H2 flow rate/slpm | Rotation velocity/% | Distance/mm |
---|---|---|---|---|
650 | 40 | 12 | 30 | 110 |
Table 1 Atmospheric plasma spraying parameters for YAG/Al2O3 coating
Current/A | Ar flow rate/slpm | H2 flow rate/slpm | Rotation velocity/% | Distance/mm |
---|---|---|---|---|
650 | 40 | 12 | 30 | 110 |
Fig. 1 XRD patterns of the surfaces of YAG/Al2O3 coatings after CMAS corrosion at 1300 ℃ for (a) 1, (b) 4, and (c) 25 h Colorful patterns are available on website
Fig. 2 Surface morphologies of YAG/Al2O3 coatings after CMAS corrosion Coatings annealed at 1100, 1300, and 1500 ℃ after CMAS corrosion for (a-c) 1, (d-f) 4, and (g-i) 25 h
Fig. 3 TEM analyses of YAG/Al2O3 coating annealed at 1100 ℃ after CMAS corrosion for 1 h (a) Selected area for TEM sample preparation via FIB; (b) Bright-field TEM image from the region indicated by black dashed box in (a); (c) SAED pattern of area marked with black circle in (b)
Region | O | Mg | Al | Si | Ca | Y | Phase |
---|---|---|---|---|---|---|---|
A | 50.41±1.59 | — | 17.47±0.70 | 22.27±0.71 | 10.16±0.45 | — | CaAl2Si2O8 |
B | 54.10±3.25 | — | 16.47±0.78 | 19.42±0.95 | 10.00±1.84 | — | CaAl2Si2O8 |
C | 58.95±0.44 | 5.60±0.29 | 3.79±0.49 | 16.57±0.32 | 15.09±0.20 | — | Ca2MgSi2O7 |
D | 39.07±1.11 | 3.70±0.34 | 17.29±0.53 | 17.48±0.52 | 12.41±0.50 | 10.06±0.62 | YAG |
E | 49.54±1.04 | 3.23±0.40 | 4.73±0.18 | 23.34±0.41 | 13.81±1.60 | 5.34±0.71 | CMAS |
Table 2 SEM-EDS analytical results of the phases on the surface of YAG/Al2O3 coating annealed at 1100 ℃ after CMAS corrosion for 1 h (%, in atom)
Region | O | Mg | Al | Si | Ca | Y | Phase |
---|---|---|---|---|---|---|---|
A | 50.41±1.59 | — | 17.47±0.70 | 22.27±0.71 | 10.16±0.45 | — | CaAl2Si2O8 |
B | 54.10±3.25 | — | 16.47±0.78 | 19.42±0.95 | 10.00±1.84 | — | CaAl2Si2O8 |
C | 58.95±0.44 | 5.60±0.29 | 3.79±0.49 | 16.57±0.32 | 15.09±0.20 | — | Ca2MgSi2O7 |
D | 39.07±1.11 | 3.70±0.34 | 17.29±0.53 | 17.48±0.52 | 12.41±0.50 | 10.06±0.62 | YAG |
E | 49.54±1.04 | 3.23±0.40 | 4.73±0.18 | 23.34±0.41 | 13.81±1.60 | 5.34±0.71 | CMAS |
Fig. 4 Cross-sectional morphologies of YAG/Al2O3 coatings after CMAS corrosion Coatings annealed at 1100, 1300, and 1500 ℃ after CMAS corrosion for (a-c) 1, (d-f) 4, and (g-i) 25 h
Region | O | Mg | Al | Si | Ca | Y | Phase |
---|---|---|---|---|---|---|---|
A | 24.15±0.56 | — | 24.40±0.29 | 34.29±0.21 | 17.16±0.22 | — | CaAl2Si2O8 |
B | 23.06±3.46 | 5.43±0.30 | 11.72±0.42 | 28.70±1.50 | 31.09±1.49 | — | CMAS |
C | 18.45±2.17 | 3.63±0.42 | 8.98±0.70 | 35.71±1.30 | 20.57±0.38 | 12.67±0.82 | YAG |
D | 26.70±2.79 | 2.13±0.61 | 29.42±0.78 | 14.12±1.62 | 10.47±0.54 | 17.18±0.81 | YAG |
E | 31.18±1.51 | 1.40±0.17 | 10.56±0.53 | 31.3±0.53 | 21.09±0.73 | 4.47±0.14 | CMAS |
Table 3 SEM-EDS analytical results of phases in the cross-section of YAG/Al2O3 coating annealed at 1300 ℃ after CMAS corrosion for 4 h (%, in atom)
Region | O | Mg | Al | Si | Ca | Y | Phase |
---|---|---|---|---|---|---|---|
A | 24.15±0.56 | — | 24.40±0.29 | 34.29±0.21 | 17.16±0.22 | — | CaAl2Si2O8 |
B | 23.06±3.46 | 5.43±0.30 | 11.72±0.42 | 28.70±1.50 | 31.09±1.49 | — | CMAS |
C | 18.45±2.17 | 3.63±0.42 | 8.98±0.70 | 35.71±1.30 | 20.57±0.38 | 12.67±0.82 | YAG |
D | 26.70±2.79 | 2.13±0.61 | 29.42±0.78 | 14.12±1.62 | 10.47±0.54 | 17.18±0.81 | YAG |
E | 31.18±1.51 | 1.40±0.17 | 10.56±0.53 | 31.3±0.53 | 21.09±0.73 | 4.47±0.14 | CMAS |
Fig. 5 TEM analyses of YAG/Al2O3 coating annealed at 1300 ℃ after CMAS corrosion for 4 h (a-c) Bright-field TEM images from regions indicated by dashed box with numbers 1, 2 and 3 in Fig. 4(e), respectively; (d) SAED pattern of area in (a) marked with letter A; (e-i) SAED patterns of areas in (a) marked with letters C-G, respectively
Region | O | Mg | Al | Si | Ca | Y | Phase |
---|---|---|---|---|---|---|---|
E | 43.12±4.00 | 6.84±0.22 | 3.49±0.30 | 21.96±1.32 | 24.59±2.26 | Ca2MgSi2O7 | |
F | 50.79±0.93 | 5.61±0.19 | 6.51±0.27 | 17.50±0.82 | 11.34±0.49 | 8.25±0.42 | YAG |
G | 59.33±2.03 | 0.54±0.14 | 4.95±0.26 | 19.53±0.73 | 13.38±0.89 | 2.27±0.14 | CMAS |
Table S1 TEM-EDS results of the regions marked with letters E, F, and G in Fig. 5(c)(%, in atom)
Region | O | Mg | Al | Si | Ca | Y | Phase |
---|---|---|---|---|---|---|---|
E | 43.12±4.00 | 6.84±0.22 | 3.49±0.30 | 21.96±1.32 | 24.59±2.26 | Ca2MgSi2O7 | |
F | 50.79±0.93 | 5.61±0.19 | 6.51±0.27 | 17.50±0.82 | 11.34±0.49 | 8.25±0.42 | YAG |
G | 59.33±2.03 | 0.54±0.14 | 4.95±0.26 | 19.53±0.73 | 13.38±0.89 | 2.27±0.14 | CMAS |
[1] | PADTURE N P. Advanced structural ceramics in aerospace propulsion. Nature Materials, 2016, 15: 804. |
[2] | MANUEL B. Advanced ceramic materials for high temperature applications. Advanced Engineering Materials, 2006, 8(8):693. |
[3] | JACOBSON N S, OPILA E J, LEE K N. Oxidation and corrosion of ceramics and ceramic matrix composites. Current Opinion in Solid State & Materials Science, 2001, 5(4):301. |
[4] | EATON H E, LINSEY G D. Accelerated oxidation of SiC CMC’s by water vapor and protection via environmental barrier coating approach. Journal of the European Ceramic Society, 2002, 22(14/15):2741. |
[5] | POERSCHKE D L, VAN SLUYTMAN J S, WONG K B, et al. Thermochemical compatibility of ytterbia-(hafnia/silica) multilayers for environment barrier coatings. Acta Materialia, 2013, 61(18):6743. |
[6] | BAKAN E, MARCANO D, ZHOU D P, et al. Yb2Si2O7 environmental barrier coatings deposited by various thermal spray techniques: a preliminary comparative study. Journal of Thermal Spray Technology, 2017, 26(6):1011. |
[7] | TIAN Z L, ZHENG L Y, WNAG J M, et al. Theoretical and experimental determination of the major thermo-mechanical properties of RE2SiO5 (RE=Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y) for environmental and thermal barrier coating applications. Journal of the European Ceramic Society, 2015, 36: 189. |
[8] |
王京阳, 孙鲁超, 罗颐秀, 等. 以抗CMAS腐蚀为目标的稀土硅酸盐环境障涂层高熵化设计与性能提升. 金属学报, 2023, 59(4):523.
DOI |
[9] |
SUN L C, REN X M, DU T F, et al. High entropy engineering: new strategy for the critical property optimizations of rare earth silicates. Journal of Inorganic Materials, 2021, 36(4):339.
DOI |
[10] | TIAN Z L, REN X M, LEI Y M, et al. Corrosion of RE2Si2O7 (RE=Y, Yb, and Lu) environmental barrier coating materials by molten calcium-magnesium-alumino-silicate glass at high temperatures. Journal of the European Ceramic Society, 2019, 39: 4245. |
[11] | WEBSTER R I, OPILA E J. Mixed phase ytterbium silicate environmental-barrier coating materials for improved calcium- magnesium-alumino-silicate resistance. Journal of Materials Research, 2020, 35(17):2358. |
[12] | WANG H Y, LUO Z X, SUN L C, et al. Comprehensive microstructural characterization and CMAS infiltration resistance of ytterbium disilicate coatings with lamellar and quasi-columnar structures. Corrosion Science, 2023, 221: 11316. |
[13] | SUN H F, SUN L C, REN X M, et al. Outstanding molten calcium-magnesium-aluminosilicate (CMAS) corrosion resistance of directionally solidified Al2O3/Y3Al5O12 eutectic ceramic at 1500 ℃. Corrosion Science, 2023, 220: 111289. |
[14] | ZHOU C, SUN L C, DU T F, et al. Excellent calcium- magnesium-luminosilicate corrosion resistance of high-entropy garnet/alumina directionally solidified eutectic at 1500 ℃. Journal of the American Ceramic Society, 2024, 107(3):1748. |
[15] | STOLZENBURG F, JOHNSON M T, LEE K N, et al. The interaction of calcium-magnesium-aluminosilicate with ytterbium silicate environmental barrier materials. Surface & Coating Technology, 2015, 284: 44. |
[16] | GODBOLE E, KARTHIKEYAN N, POERSCHKE D, et al. Garnet stability in the Al-Ca-Mg-Si-Y-O system with implications for reactions between TBCs, EBCs, and silicate deposits. Journal of the American Ceramic Society, 2020, 103(9):5270. |
[17] | SATOSHI K, MAKOTO T, NAOKI K, et al. CMAS degradation of ytterbium aluminum garnets. Journal of the American Ceramic Society, 2023, 106: 4863. |
[18] | THOMAS M S, PETE R D. Forces between aluminum oxide grains in a silicate melt and their effect on grain boundary wetting. Journal of the American Ceramic Society, 1991, 74(10):2495. |
[19] | PHILIP L F, JOSEPH A P. Penetration of polycrystalline alumina by glass at high temperature. Journal of the American Ceramic Society, 1987, 70(7):449. |
[20] | ZHAO H B, RICHARDE B T, LEVI C G, et al. Molten silicate reactions with plasma sprayed ytterbium silicate coatings. Surface & Coating Technology, 2016, 288: 151. |
[1] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
[2] | TAO Shunyan, YANG Jiasheng, SHAO Fang, WU Yingchen, ZHAO Huayu, DONG Shaoming, ZHANG Xiangyu, XIONG Ying. Thermal Spray Coatings for Aircraft CMC Hot-end Components: Opportunities and Challenges [J]. Journal of Inorganic Materials, 2024, 39(10): 1077-1083. |
[3] | FAN Dong, ZHONG Xin, WANG Yawen, ZHANG Zhenzhong, NIU Yaran, LI Qilian, ZHANG Le, ZHENG Xuebin. Corrosion Behavior and Mechanism of Aluminum-rich CMAS on Rare-earth Silicate Environmental Barrier Coatings: [J]. Journal of Inorganic Materials, 2023, 38(5): 544-552. |
[4] | LIU Pingping, ZHONG Xin, ZHANG Le, LI Hong, NIU Yaran, ZHANG Xiangyu, LI Qilian, ZHENG Xuebin. Molten Salt Corrosion Behaviors and Mechanisms of Ytterbium Silicate Environmental Barrier Coating [J]. Journal of Inorganic Materials, 2022, 37(12): 1267-1274. |
[5] | SUN Luchao, REN Xiaomin, DU Tiefeng, LUO Yixiu, ZHANG Jie, WANG Jingyang. High Entropy Engineering: New Strategy for the Critical Property Optimizations of Rare Earth Silicates [J]. Journal of Inorganic Materials, 2021, 36(4): 339-346. |
[6] | Yan-Zhe ZHOU, Min LIU, Kun YANG, Wei ZENG, Jin-Bing SONG, Chun-Ming DENG, Chang-Guang DENG. Microstructure and Property of MoSi2-30Al2O3 Electrothermal Coating Prepared by Atmospheric Plasma Spraying [J]. Journal of Inorganic Materials, 2019, 34(6): 646-652. |
[7] | ZHANG Xiao-Feng, ZHOU Ke-Song, LIU Min, DENG Chun-Ming, NIU Shao-Peng, XU Shi-Ming. Preparation of Si/Mullite/Yb2SiO5 Environment Barrier Coating (EBC) by Plasma Spray-Physical Vapor Deposition (PS-PVD) [J]. Journal of Inorganic Materials, 2018, 33(3): 325-330. |
[8] | LI Da-Chuan, ZHAO Hua-Yu, ZHONG Xing-Hua, TAO Shun-Yan. Research Progresses of Atmospheric Plasma Sprayed Splat [J]. Journal of Inorganic Materials, 2017, 32(6): 571-580. |
[9] | SUN Xu-Xuan, CHEN Hong-Fei, YANG Guang, LIU Bin, GAO Yan-Feng. YSZ- Ti3AlC2 Thermal Barrier Coating and Its Self-healing Behavior under High Temperatures [J]. Journal of Inorganic Materials, 2017, 32(12): 1269-1274. |
[10] | YU Fang-Li, BAI Yu, WU Xiu-Ying, Wang Hai-Jun, WU Jiu-Hui. Corrosion Resistance and Anti-wear Property of Nickel Based Abradable Sealing Coating Deposited by Plasma Spraying [J]. Journal of Inorganic Materials, 2016, 31(7): 687-693. |
[11] | MAO Jin-Yuan, LIU Min, MAO Jie, DENG Chun-Min, ZENG De-Chang, XU Lin. Oxidation-resistance of ZrB2-MoSi2 Composite Coatings Prepared by Atmospheric Plasma Spraying [J]. Journal of Inorganic Materials, 2015, 30(3): 282-286. |
[12] | LU Lin-Jing, CHENG Lai-Fei, HONG Zhi-Liang, WANG Yi-Guang, ZHANG Li-Tong. Fabrication and Water-vapor Corrosion Resistance of Ba0.25Sr0.75Al2Si2O8 Environmental Barrier Coating [J]. Journal of Inorganic Materials, 2011, 26(7): 701-706. |
[13] | WU Jiang,LIN Hong,LI Jian-Bao,LI Jun-Feng. Corrosion Behavior of AlNbO4/Mullite Composite as Environmental Barrier Coating in Water Vapor Environment [J]. Journal of Inorganic Materials, 2010, 25(4): 445-448. |
[14] | HONG Zhi-Liang,CHENG Lai-Fei,LU Lin-Jing,ZHANG Li-Tong,WANG Yi-Guang. Corrosion Behavior of Lu-Si-O System in Water Vapor [J]. Journal of Inorganic Materials, 2010, 15(2): 186-190. |
[15] | CHEN Xian-Hong,CHENG Lai-Fei,WANG Yi-Guang,ZHANG Li-Tong,HONG Zhi-Liang,WU Ya-Hui. Corrosion Behavior of AlPO4 as Environmental Barrier Coating in Water Vapor Enviroment [J]. Journal of Inorganic Materials, 2009, 24(2): 397-401. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||