[1] |
WOLFBEIS O S. Analytical chemistry with optical sensors. Fresenius' Zeitschrift für Analytische Chemie, 1986, 325(4): 387.
|
[2] |
PAPKOVSKY D B, DMITRIEV R I. Biological detection by optical oxygen sensing. Chemical Society Reviews, 2013, 42(22): 8700.
|
[3] |
FENG Y, CHENG J, ZHOU L, et al. Ratiometric optical oxygen sensing: a review in respect of material design. Analyst, 2012, 137(21): 4885.
|
[4] |
BABILAS P, LAMBY P, PRANTL L, et al. Transcutaneous pO2 imaging during Tourniquet‐induced forearm ischemia using planar optical oxygen sensors. Skin Research and Technology, 2008, 14(3): 304.
|
[5] |
CARVALHO A, COSTA R, NEVES S, et al. Determination of dissolved oxygen in water by the Winkler method: performance modelling and optimisation for environmental analysis. Microchemical Journal, 2021, 165: 106129.
|
[6] |
CHEN R, FORMENTI F, MCPEAK H, et al. Optimizing design for polymer fiber optic oxygen sensors. IEEE Sensors Journal, 2014, 14(10): 3358.
|
[7] |
WINKLER L W. Die bestimmung des im wasser gelösten sauerstoffes. Berichte der Deutschen Chemischen Gesellschaft, 1888, 21(2): 2843.
|
[8] |
KINOSHITA K. Electrochemical Oxygen Technology. New York: John Wiley & Sons, 1992.
|
[9] |
LAMPRECHT B, TSCHEPP A, ČAJLAKOVIĆ M, et al. A luminescence lifetime-based capillary oxygen sensor utilizing monolithically integrated organic photodiodes. Analyst, 2013, 138(20): 5875.
|
[10] |
MILLS A, TOMMONS C, BAILEY R, et al. Thin-film oxygen sensors using a luminescent polynuclear gold (I) complex. Analytica Chimica Acta, 2011, 702(2): 269.
|
[11] |
CHU C S, LIN C A. Optical fiber sensor for dual sensing of temperature and oxygen based on PtTFPP/CF embedded in Sol-Gel matrix. Sensors and Actuators B: Chemical, 2014, 195: 259.
|
[12] |
KELLY C A, TONCELLI C, KERRY J P, et al. Discrete O2 sensors produced by a spotting method on polyolefin fabric substrates. Sensors and Actuators B: Chemical, 2014, 203: 935.
|
[13] |
LEE S K, OKURA I. Porphyrin-doped Sol-Gel glass as a probe for oxygen sensing. Analytica Chimica Acta, 1997, 342(2/3): 181.
|
[14] |
LEI B, LI B, ZHANG H, et al. Mesostructured silica chemically doped with RuII as a superior optical oxygen sensor. Advanced Functional Materials, 2006, 16(14): 1883.
|
[15] |
ZHANG Y, CHEN L, LIN Z, et al. Highly sensitive dissolved oxygen sensor with a sustainable antifouling, antiabrasion, and self-cleaning superhydrophobic surface. ACS Omega, 2019, 4(1): 1715.
|
[16] |
WON S, WON K. Self-powered flexible oxygen sensors for intelligent food packaging. Food Packaging and Shelf Life, 2021, 29: 100713.
|
[17] |
MITSUBAYASHI K, WAKABAYASHI Y, MUROTOMI D, et al. Wearable and flexible oxygen sensor for transcutaneous oxygen monitoring. Sensors and Actuators B: Chemical, 2003, 95(1/2/3): 373.
|
[18] |
MADDIPATLA D, NARAKATHU B B, OCHOA M, et al. Rapid prototyping of a novel and flexible paper based oxygen sensing patch via additive inkjet printing process. RSC Advances, 2019, 9(39): 22695.
|
[19] |
MOYA A, SOWADE E, DEL CAMPO F J, et al. All-inkjet-printed dissolved oxygen sensors on flexible plastic substrates. Organic Electronics, 2016, 39: 168.
|
[20] |
KUDO H, IGUCHI S, YAMADA T, et al. A flexible transcutaneous oxygen sensor using polymer membranes. Biomedical Microdevices, 2007, 9(1): 1.
|
[21] |
CHEN S, REN Q, ZHANG K, et al. A highly sensitive and flexible photonic crystal oxygen sensor. Sensors and Actuators B: Chemical, 2022, 355: 131326.
|
[22] |
GRKMAN J J, KAVČIČ U, KARLOVITS I. Development of multicomponent fiber box with improved fire resistance and barrier properties. Cellulose Chemistry and Technology, 2022, 56(1/2): 159.
|
[23] |
YAMAZAKI S, MAEDA H, OBATA A, et al. Aluminum silicate nanotube coating of siloxane-poly (lactic acid)-vaterite composite fibermats for bone regeneration. Journal of Nanomaterials, 2012, 2012: 5.
|
[24] |
DONG B, LV Y, ZHI Z, et al. Robust superhydrophobic ceramic fiber braid for oil water separation. Ceramics International, 2023, 49(7): 11725.
|
[25] |
ZHANG G, XUE Y, LIU P, et al. High emissivity double-layer coating on the flexible aluminum silicate fiber fabric with enhanced interfacial bonding strength and high temperature resistance. Journal of the European Ceramic Society, 2021, 41(2): 1452.
|
[26] |
LU D H, WANG Z, JIANG Y H, et al. Effect of aluminum silicate fiber modification on crack-resistance of a ceramic mould. China Foundry, 2012, 9(4): 322.
|
[27] |
XUE Y, TAO X, ZHANG H, et al. High emissivity scale structure MoSi2-silicon glass coating on aluminum silicate fiber cloths with excellent flexibility and oxidation resistance below 1000 ℃. Ceramics International, 2023, 49(5): 8516.
|
[28] |
ZHAO C S, HAN W J, YU D M, et al. The design and preparation process of aluminum silicate fiber paperboard machine. Applied Mechanics and Materials, 2012, 215: 235.
|
[29] |
GAO Z, SONG G, ZHANG X, et al. A facile PDMS coating approach to room-temperature gas sensors with high humidity resistance and long-term stability. Sensors and Actuators B: Chemical, 2020, 325: 128810.
|
[30] |
MICHEL B, BERNARD A, BIETSCH A, et al. Printing meets lithography: soft approaches to high-resolution patterning. IBM Journal of Research and Development, 2001, 45(5): 697.
|
[31] |
LEE S K, OKURA I. Photostable optical oxygen sensing material: platinum tetrakis (pentafluorophenyl) porphyrin immobilized in polystyrene. Analytical Communications, 1997, 34(6): 185.
|
[32] |
WANG X D, WOLFBEIS O S. Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications. Chemical Society Reviews, 2014, 43(10): 3666.
|
[33] |
LIANG Y, WU Z, WEI Y, et al. Self-healing, self-adhesive and stable organohydrogel-based stretchable oxygen sensor with high performance at room temperature. Nano-Micro Letters, 2022, 14(1): 52.
|