Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (6): 652-658.DOI: 10.15541/jim20200508
• RESEARCH LETTER • Previous Articles Next Articles
SUN Luchao1(), ZHOU Cui1,2, DU Tiefeng1, WU Zhen1, LEI Yiming1,2, LI Jialin1, SU Haijun3(
), WANG Jingyang1(
)
Received:
2020-09-01
Revised:
2020-09-29
Published:
2021-06-20
Online:
2020-10-10
Contact:
WANG Jingyang, professor. E-mail: jywang@imr.ac.cn; SU Haijun, professor. E-mail: shjnpu@nwpu.edu.cn
About author:
SUN Luchao(1984-), male, associate professor. E-mail: lcsun@imr.ac.cn
Supported by:
CLC Number:
SUN Luchao, ZHOU Cui, DU Tiefeng, WU Zhen, LEI Yiming, LI Jialin, SU Haijun, WANG Jingyang. Directionally Solidified Al2O3/Er3Al5O12 and Al2O3/Yb3Al5O12 Eutectic Ceramics Prepared by Optical Floating Zone Melting[J]. Journal of Inorganic Materials, 2021, 36(6): 652-658.
Eutectic system | Growth method | Growth directions | Orientation relationships |
---|---|---|---|
Al2O3/ErAG | OFZ | <$10\bar{1}0$> Al2O3//<111> ErAG | {0001} Al2O3//{211} ErAG |
Al2O3/REAG | OFZ | <$10\bar{1}0$> Al2O3//<101> REAG | {0001} Al2O3//{211} REAG |
RE=Er/Yb[ | <$10\bar{1}0$> Al2O3//<$2\bar{1}0$> REAG | ||
Al2O3/YAG[ | OFZ | <$10\bar{1}0$> Al2O3//<101> YAG | {0001} Al2O3//{211} YAG |
Al2O3/YAG[ | LFZ | <$1\bar{1}00$> Al2O3//<111> YAG | {0001} Al2O3//{$1\bar{1}2$} YAG |
Al2O3/YAG[ | Bridgman | <$1\bar{1}20$> Al2O3//<110> YAG | - |
<$01\bar{1}0$> Al2O3//<110> YAG | |||
Al2O3/YAG[ | LSP | <$10\bar{1}0$> Al2O3//<101> YAG | {0001} Al2O3//{211} YAG |
Eutectic system | Growth method | Growth directions | Orientation relationships |
---|---|---|---|
Al2O3/ErAG | OFZ | <$10\bar{1}0$> Al2O3//<111> ErAG | {0001} Al2O3//{211} ErAG |
Al2O3/REAG | OFZ | <$10\bar{1}0$> Al2O3//<101> REAG | {0001} Al2O3//{211} REAG |
RE=Er/Yb[ | <$10\bar{1}0$> Al2O3//<$2\bar{1}0$> REAG | ||
Al2O3/YAG[ | OFZ | <$10\bar{1}0$> Al2O3//<101> YAG | {0001} Al2O3//{211} YAG |
Al2O3/YAG[ | LFZ | <$1\bar{1}00$> Al2O3//<111> YAG | {0001} Al2O3//{$1\bar{1}2$} YAG |
Al2O3/YAG[ | Bridgman | <$1\bar{1}20$> Al2O3//<110> YAG | - |
<$01\bar{1}0$> Al2O3//<110> YAG | |||
Al2O3/YAG[ | LSP | <$10\bar{1}0$> Al2O3//<101> YAG | {0001} Al2O3//{211} YAG |
Eutectic system | Preparation method | Vickers hardness /GPa | Fracture toughness /(MPa·m1/2) |
---|---|---|---|
Al2O3/ErAG | OFZ | (13.5±0.4) | (3.0 ± 0.2) |
Al2O3/YbAG | OFZ | (12.8±0.1) | (3.2 ± 0.1) |
Al2O3/ErAG[ | LFZ | (14.5-16.0) | 1.9 |
Al2O3/ErAG[ | LFZ | (14.9±0.7) | (1.8 ± 0.3) |
Al2O3/YbAG[ | LFZ | (14.8±0.6) | (2.2 ± 0.5) |
Al2O3/YAG[ | OFZ | 13.5 | (3.1±0.3) |
Eutectic system | Preparation method | Vickers hardness /GPa | Fracture toughness /(MPa·m1/2) |
---|---|---|---|
Al2O3/ErAG | OFZ | (13.5±0.4) | (3.0 ± 0.2) |
Al2O3/YbAG | OFZ | (12.8±0.1) | (3.2 ± 0.1) |
Al2O3/ErAG[ | LFZ | (14.5-16.0) | 1.9 |
Al2O3/ErAG[ | LFZ | (14.9±0.7) | (1.8 ± 0.3) |
Al2O3/YbAG[ | LFZ | (14.8±0.6) | (2.2 ± 0.5) |
Al2O3/YAG[ | OFZ | 13.5 | (3.1±0.3) |
[1] |
WAKU Y, NAKAGAWA N, WAKAMOTO T, et al. High temperature strength and thermal stability of a unidirectionally solidified Al2O3/YAG eutectic composite. Journal of Materials Science, 1998,33:1217-1225.
DOI URL |
[2] |
WAKU Y, NAKAGAWA N, WAKAMOTO T, et al. A ductile ceramic eutectic composite with high strength. Nature, 1997,389:49-52.
DOI URL |
[3] |
LLORCA J, ORERA V M. Directionally solidified eutectic oxide ceramics. Progress in Materials Science, 2006,51:711-809.
DOI URL |
[4] |
PASTOR J Y, LLORCA J, SALAZAR A, et al. Mechanical properties of melt-grown alumina-yttrium aluminum garnet eutectics up to 1900 K. Journal of the American Ceramic Society, 2005,88:1488-1495.
DOI URL |
[5] |
OLIETE P B, PENA J I, LARREA A, et al. Ultra-high-strength nanofibrillar Al2O3-YAG-YSZ eutectics. Advanced Materials, 2007,19:2313-2318.
DOI URL |
[6] |
ZHANG J, SU H J, SONG K, et al. Microstructure, growth mechanism and mechanical property of Al2O3-based eutectic ceramic in situ composites. Journal of the European Ceramic Society, 2011,31:1191-1198.
DOI URL |
[7] |
WAKU Y, NAKAGAWA N, OHTSUBO H, et al. Fracture and deformation behaviour of melt growth composites at very high temperatures. Journal of Materials Science, 2001,36:1585-1594.
DOI URL |
[8] |
MARTINEZ FERNANDEZ J, SAYIR A, FARMER S C. High temperature creep deformation of directionally solidified Al2O3/ Er3Al5O12. Acta Materialia, 2003,51:1705-1720.
DOI URL |
[9] |
MESA M C, OLIETE P B, ORERA V M, et al. Microstructure and mechanical properties of Al2O3/Er3Al5O12 eutectic rods grown by the laser-heated floating zone method. Journal of the European Ceramic Society, 2011,31:1241-1250.
DOI URL |
[10] |
MESA M C, OLIETE P B, LARREA A. Microstructural stability at elevated temperatures of directionally solidified Al2O3/Er3Al5O12 eutectic ceramics. Journal of Crystal Growth, 2012,360:119-122.
DOI URL |
[11] |
REN Q, SU H J, ZHANG J, et al. Microstructure control, competitive growth and precipitation rule in faceted Al2O3/Er3Al5O12 eutectic in situ composite ceramics prepared by laser floating zone melting. Journal of the European Ceramic Society, 2019,39:1900-1908.
DOI URL |
[12] |
REN Q, SU H J, ZHANG J, et al. Halo formation in directionally solidified Al2O3-Er3Al5O12 off-eutectic in situ composite ceramics. Materials Characterization, 2019,150:31-37.
DOI URL |
[13] |
REN Q, SU H J, ZHANG J, et al. Eutectic growth behavior with regular arrangement in the faceted Al2O3/Er3Al5O12 irregular eutectic system at low growth rate. Scripta Materialia, 2019,162:49-53.
DOI URL |
[14] |
REN Q, SU H J, ZHANG J, et al. Effect of an abrupt change in pulling rate on microstructures of directionally solidified Al2O3- Er3Al5O12 eutectic and off-eutectic composite ceramics. Ceramics International, 2019,45:6632-6638.
DOI URL |
[15] |
SAI H, YUGAMI H, NAKAMURA K, et al. Selective emission of Al2O3/Er3Al5O12 eutectic composite for thermophotovoltaic generation of electricity. Japanese Journal of Applied Physics, 2000,39:1957-1961.
DOI URL |
[16] | ADACHI Y, YUGAMI H, SHIBATA K, et al. Compact TPV generation system using Al2O3/Er3Al5O12 eutectic ceramics selective emitters. AIP Conference Proceedings, 2004,738:198-205. |
[17] |
NAKAGAWA N, OHTSUBO H, WAKU Y, et al. Thermal emission properties of Al2O3/Er3Al5O12 eutectic ceramics. Journal of the European Ceramic Society, 2005,25:1285-1291.
DOI URL |
[18] |
OLIETE P B, MESA M C, MERINO R I, et al. Directionally solidified Al2O3-Yb3Al5O12 eutectics for selective emitters. Solar Energy Materials and Solar Cells, 2016,144:405-410.
DOI URL |
[19] | OLIETE P B, MANUEL J, ROBLEDO L, et al. Directionally solidified Al2O3-ME3Al5O12( ME: Y, Er and Yb) eutectic coatings for thermophotovoltaic systems. Ceramics International, 2017,43:16270-16275. |
[20] |
LAKIZA S M. Directionally solidified eutectics in the Al2O3-ZrO2- Ln(Y)2O3 systems. Powder Metallurgy and Metal Ceramics, 2009,48:1-2.
DOI URL |
[21] |
YOSHIKAWA A, HASEGAWA K, LEE J H, et al. Phase identification of Al2O3/RE3Al5O12 and Al2O3/REAlO3(RE=Sm-Lu, Y) eutectics. Journal of Crystal Growth, 2000,218:67-73.
DOI URL |
[22] |
ANSTIS G R, CHANTIKUL P, LAWN B R, et al. A critical- evaluation of indentation techniques for measuring fracture- toughness: I, direct crack measurements. Journal of the American Ceramic Society, 1981,64:533-538.
DOI URL |
[23] |
WANG X, WANG J Y, SUN L C, et al. Microstructure evolution of Al2O3/Y3Al5O12 eutectic crystal during directional solidification. Scripta Materialia, 2015,108:31-34.
DOI URL |
[24] |
MAZEROLLES L, PERRIERE L, LARTIGUE-KORINEK S, et al. Microstructures, crystallography of interfaces, and creep behavior of melt-growth composites. Journal of the European Ceramic Society, 2008,28:2301-2308.
DOI URL |
[25] |
WANG X, TIAN Z L, ZHANG W, et al. Mechanical properties of directionally solidified Al2O3/Y3Al5O12 eutectic ceramic prepared by optical floating zone technique. Journal of the European Ceramic Society, 2018,38:3610-3617.
DOI URL |
[26] |
FRAZER C S, DICKEY E C, SAYIR A. Crystallographic texture and orientation variants in Al2O3-Y3Al5O12 directionally solidified eutectic crystals. Journal of Crystal Growth, 2001,233:187-195.
DOI URL |
[27] |
SAKATA S, MITANI A, SHIMIZU K, et al. Crystallographic orientation analysis and high temperature strength of melt growth composite. Journal of the European Ceramic Society, 2005,25:1441-1445.
DOI URL |
[28] |
SU H J, ZHANG J, MA W D, et al. In situ fabrication of highly-dense Al2O3/YAG nanoeutectic composite ceramics by a modified laser surface processing. Journal of the European Ceramic Society, 2014,34:739-744.
DOI URL |
[29] |
WANG X, WANG D, ZHANG H, et al. Mechanism of eutectic growth in directional solidification of an Al2O3/Y3Al5O12 crystal, Scripta Materialia, 2016,116:44-48.
DOI URL |
[1] | FAN Wugang, CAO Xiong, ZHOU Xiang, LI Ling, ZHAO Guannan, ZHANG Zhaoquan. Anticorrosion Performance of 8YSZ Ceramics in Simulated Aqueous Environment of Pressurized Water Reactor [J]. Journal of Inorganic Materials, 2024, 39(7): 803-809. |
[2] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[3] | JIANG Lingyi, PANG Shengyang, YANG Chao, ZHANG Yue, HU Chenglong, TANG Sufang. Preparation and Oxidation Behaviors of C/SiC-BN Composites [J]. Journal of Inorganic Materials, 2024, 39(7): 779-786. |
[4] | WU Yuhao, PENG Renci, CHENG Chunyu, YANG Li, ZHOU Yichun. First-principles Study on Mechanical Properties and Melting Curve of HfxTa1-xC System [J]. Journal of Inorganic Materials, 2024, 39(7): 761-768. |
[5] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[6] | SUN Haiyang, JI Wei, WANG Weimin, FU Zhengyi. Design, Fabrication and Properties of Periodic Ordered Structural Composites with TiB-Ti Units [J]. Journal of Inorganic Materials, 2024, 39(6): 662-670. |
[7] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[8] | LIU Guoang, WANG Hailong, FANG Cheng, HUANG Feilong, YANG Huan. Effect of B4C Content on Mechanical Properties and Oxidation Resistance of (Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 697-706. |
[9] | SU Yi, SHI Yangfan, JIA Chenglan, CHI Pengtao, GAO Yang, MA Qingsong, CHEN Sian. Microstructure and Properties of C/HfC-SiC Composites Prepared by Slurry Impregnation Assisted Precursor Infiltration Pyrolysis [J]. Journal of Inorganic Materials, 2024, 39(6): 726-732. |
[10] | ZHANG Rui, ZHANG Kan, YUAN Mengya, GU Xinlei, ZHENG Weitao. Nitrogen Vacancy Regulated Lattice Distortion on Improvement of (NbMoTaW)Nx Thin Films: Mechanical Properties and Wear Resistance [J]. Journal of Inorganic Materials, 2024, 39(6): 715-725. |
[11] | ZHENG Yawen, ZHANG Cuiping, ZHANG Ruijie, XIA Qian, RU Hongqiang. Fabrication of Boron Carbide Ceramic Composites by Boronic Acid Carbothermal Reduction and Silicon Infiltration Reaction Sintering [J]. Journal of Inorganic Materials, 2024, 39(6): 707-714. |
[12] | XUE Yifan, LI Weijie, ZHANG Zhongwei, PANG Xu, LIU Yu. Process Control of PyC Interphases Microstructure and Uniformity in Carbon Fiber Cloth [J]. Journal of Inorganic Materials, 2024, 39(4): 399-408. |
[13] | SUN Chuan, HE Pengfei, HU Zhenfeng, WANG Rong, XING Yue, ZHANG Zhibin, LI Jinglong, WAN Chunlei, LIANG Xiubing. SiC-based Ceramic Materials Incorporating GNPs Array: Preparation and Mechanical Characterization [J]. Journal of Inorganic Materials, 2024, 39(3): 267-273. |
[14] | ZHANG Yuchen, LU Zhiyao, HE Xiaodong, SONG Guangping, ZHU Chuncheng, ZHENG Yongting, BAI Yuelei. Predictions of Phase Stability and Properties of S-group Elements Containing MAX Borides [J]. Journal of Inorganic Materials, 2024, 39(2): 225-232. |
[15] | LI Lei, CHENG Qunfeng. Recent Advances in the High Performance MXenes Nanocomposites [J]. Journal of Inorganic Materials, 2024, 39(2): 153-161. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||