Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (6): 652-658.DOI: 10.15541/jim20200508
Special Issue: 【结构材料】超高温结构陶瓷
• RESEARCH LETTER • Previous Articles Next Articles
SUN Luchao1(), ZHOU Cui1,2, DU Tiefeng1, WU Zhen1, LEI Yiming1,2, LI Jialin1, SU Haijun3(), WANG Jingyang1()
Received:
2020-09-01
Revised:
2020-09-29
Published:
2021-06-20
Online:
2020-10-10
Contact:
WANG Jingyang, professor. E-mail: jywang@imr.ac.cn; SU Haijun, professor. E-mail: shjnpu@nwpu.edu.cn
About author:
SUN Luchao(1984-), male, associate professor. E-mail: lcsun@imr.ac.cn
Supported by:
CLC Number:
SUN Luchao, ZHOU Cui, DU Tiefeng, WU Zhen, LEI Yiming, LI Jialin, SU Haijun, WANG Jingyang. Directionally Solidified Al2O3/Er3Al5O12 and Al2O3/Yb3Al5O12 Eutectic Ceramics Prepared by Optical Floating Zone Melting[J]. Journal of Inorganic Materials, 2021, 36(6): 652-658.
Eutectic system | Growth method | Growth directions | Orientation relationships |
---|---|---|---|
Al2O3/ErAG | OFZ | <$10\bar{1}0$> Al2O3//<111> ErAG | {0001} Al2O3//{211} ErAG |
Al2O3/REAG | OFZ | <$10\bar{1}0$> Al2O3//<101> REAG | {0001} Al2O3//{211} REAG |
RE=Er/Yb[ | <$10\bar{1}0$> Al2O3//<$2\bar{1}0$> REAG | ||
Al2O3/YAG[ | OFZ | <$10\bar{1}0$> Al2O3//<101> YAG | {0001} Al2O3//{211} YAG |
Al2O3/YAG[ | LFZ | <$1\bar{1}00$> Al2O3//<111> YAG | {0001} Al2O3//{$1\bar{1}2$} YAG |
Al2O3/YAG[ | Bridgman | <$1\bar{1}20$> Al2O3//<110> YAG | - |
<$01\bar{1}0$> Al2O3//<110> YAG | |||
Al2O3/YAG[ | LSP | <$10\bar{1}0$> Al2O3//<101> YAG | {0001} Al2O3//{211} YAG |
Eutectic system | Growth method | Growth directions | Orientation relationships |
---|---|---|---|
Al2O3/ErAG | OFZ | <$10\bar{1}0$> Al2O3//<111> ErAG | {0001} Al2O3//{211} ErAG |
Al2O3/REAG | OFZ | <$10\bar{1}0$> Al2O3//<101> REAG | {0001} Al2O3//{211} REAG |
RE=Er/Yb[ | <$10\bar{1}0$> Al2O3//<$2\bar{1}0$> REAG | ||
Al2O3/YAG[ | OFZ | <$10\bar{1}0$> Al2O3//<101> YAG | {0001} Al2O3//{211} YAG |
Al2O3/YAG[ | LFZ | <$1\bar{1}00$> Al2O3//<111> YAG | {0001} Al2O3//{$1\bar{1}2$} YAG |
Al2O3/YAG[ | Bridgman | <$1\bar{1}20$> Al2O3//<110> YAG | - |
<$01\bar{1}0$> Al2O3//<110> YAG | |||
Al2O3/YAG[ | LSP | <$10\bar{1}0$> Al2O3//<101> YAG | {0001} Al2O3//{211} YAG |
Eutectic system | Preparation method | Vickers hardness /GPa | Fracture toughness /(MPa·m1/2) |
---|---|---|---|
Al2O3/ErAG | OFZ | (13.5±0.4) | (3.0 ± 0.2) |
Al2O3/YbAG | OFZ | (12.8±0.1) | (3.2 ± 0.1) |
Al2O3/ErAG[ | LFZ | (14.5-16.0) | 1.9 |
Al2O3/ErAG[ | LFZ | (14.9±0.7) | (1.8 ± 0.3) |
Al2O3/YbAG[ | LFZ | (14.8±0.6) | (2.2 ± 0.5) |
Al2O3/YAG[ | OFZ | 13.5 | (3.1±0.3) |
Eutectic system | Preparation method | Vickers hardness /GPa | Fracture toughness /(MPa·m1/2) |
---|---|---|---|
Al2O3/ErAG | OFZ | (13.5±0.4) | (3.0 ± 0.2) |
Al2O3/YbAG | OFZ | (12.8±0.1) | (3.2 ± 0.1) |
Al2O3/ErAG[ | LFZ | (14.5-16.0) | 1.9 |
Al2O3/ErAG[ | LFZ | (14.9±0.7) | (1.8 ± 0.3) |
Al2O3/YbAG[ | LFZ | (14.8±0.6) | (2.2 ± 0.5) |
Al2O3/YAG[ | OFZ | 13.5 | (3.1±0.3) |
[1] |
WAKU Y, NAKAGAWA N, WAKAMOTO T, et al. High temperature strength and thermal stability of a unidirectionally solidified Al2O3/YAG eutectic composite. Journal of Materials Science, 1998,33:1217-1225.
DOI URL |
[2] |
WAKU Y, NAKAGAWA N, WAKAMOTO T, et al. A ductile ceramic eutectic composite with high strength. Nature, 1997,389:49-52.
DOI URL |
[3] |
LLORCA J, ORERA V M. Directionally solidified eutectic oxide ceramics. Progress in Materials Science, 2006,51:711-809.
DOI URL |
[4] |
PASTOR J Y, LLORCA J, SALAZAR A, et al. Mechanical properties of melt-grown alumina-yttrium aluminum garnet eutectics up to 1900 K. Journal of the American Ceramic Society, 2005,88:1488-1495.
DOI URL |
[5] |
OLIETE P B, PENA J I, LARREA A, et al. Ultra-high-strength nanofibrillar Al2O3-YAG-YSZ eutectics. Advanced Materials, 2007,19:2313-2318.
DOI URL |
[6] |
ZHANG J, SU H J, SONG K, et al. Microstructure, growth mechanism and mechanical property of Al2O3-based eutectic ceramic in situ composites. Journal of the European Ceramic Society, 2011,31:1191-1198.
DOI URL |
[7] |
WAKU Y, NAKAGAWA N, OHTSUBO H, et al. Fracture and deformation behaviour of melt growth composites at very high temperatures. Journal of Materials Science, 2001,36:1585-1594.
DOI URL |
[8] |
MARTINEZ FERNANDEZ J, SAYIR A, FARMER S C. High temperature creep deformation of directionally solidified Al2O3/ Er3Al5O12. Acta Materialia, 2003,51:1705-1720.
DOI URL |
[9] |
MESA M C, OLIETE P B, ORERA V M, et al. Microstructure and mechanical properties of Al2O3/Er3Al5O12 eutectic rods grown by the laser-heated floating zone method. Journal of the European Ceramic Society, 2011,31:1241-1250.
DOI URL |
[10] |
MESA M C, OLIETE P B, LARREA A. Microstructural stability at elevated temperatures of directionally solidified Al2O3/Er3Al5O12 eutectic ceramics. Journal of Crystal Growth, 2012,360:119-122.
DOI URL |
[11] |
REN Q, SU H J, ZHANG J, et al. Microstructure control, competitive growth and precipitation rule in faceted Al2O3/Er3Al5O12 eutectic in situ composite ceramics prepared by laser floating zone melting. Journal of the European Ceramic Society, 2019,39:1900-1908.
DOI URL |
[12] |
REN Q, SU H J, ZHANG J, et al. Halo formation in directionally solidified Al2O3-Er3Al5O12 off-eutectic in situ composite ceramics. Materials Characterization, 2019,150:31-37.
DOI URL |
[13] |
REN Q, SU H J, ZHANG J, et al. Eutectic growth behavior with regular arrangement in the faceted Al2O3/Er3Al5O12 irregular eutectic system at low growth rate. Scripta Materialia, 2019,162:49-53.
DOI URL |
[14] |
REN Q, SU H J, ZHANG J, et al. Effect of an abrupt change in pulling rate on microstructures of directionally solidified Al2O3- Er3Al5O12 eutectic and off-eutectic composite ceramics. Ceramics International, 2019,45:6632-6638.
DOI URL |
[15] |
SAI H, YUGAMI H, NAKAMURA K, et al. Selective emission of Al2O3/Er3Al5O12 eutectic composite for thermophotovoltaic generation of electricity. Japanese Journal of Applied Physics, 2000,39:1957-1961.
DOI URL |
[16] | ADACHI Y, YUGAMI H, SHIBATA K, et al. Compact TPV generation system using Al2O3/Er3Al5O12 eutectic ceramics selective emitters. AIP Conference Proceedings, 2004,738:198-205. |
[17] |
NAKAGAWA N, OHTSUBO H, WAKU Y, et al. Thermal emission properties of Al2O3/Er3Al5O12 eutectic ceramics. Journal of the European Ceramic Society, 2005,25:1285-1291.
DOI URL |
[18] |
OLIETE P B, MESA M C, MERINO R I, et al. Directionally solidified Al2O3-Yb3Al5O12 eutectics for selective emitters. Solar Energy Materials and Solar Cells, 2016,144:405-410.
DOI URL |
[19] | OLIETE P B, MANUEL J, ROBLEDO L, et al. Directionally solidified Al2O3-ME3Al5O12( ME: Y, Er and Yb) eutectic coatings for thermophotovoltaic systems. Ceramics International, 2017,43:16270-16275. |
[20] |
LAKIZA S M. Directionally solidified eutectics in the Al2O3-ZrO2- Ln(Y)2O3 systems. Powder Metallurgy and Metal Ceramics, 2009,48:1-2.
DOI URL |
[21] |
YOSHIKAWA A, HASEGAWA K, LEE J H, et al. Phase identification of Al2O3/RE3Al5O12 and Al2O3/REAlO3(RE=Sm-Lu, Y) eutectics. Journal of Crystal Growth, 2000,218:67-73.
DOI URL |
[22] |
ANSTIS G R, CHANTIKUL P, LAWN B R, et al. A critical- evaluation of indentation techniques for measuring fracture- toughness: I, direct crack measurements. Journal of the American Ceramic Society, 1981,64:533-538.
DOI URL |
[23] |
WANG X, WANG J Y, SUN L C, et al. Microstructure evolution of Al2O3/Y3Al5O12 eutectic crystal during directional solidification. Scripta Materialia, 2015,108:31-34.
DOI URL |
[24] |
MAZEROLLES L, PERRIERE L, LARTIGUE-KORINEK S, et al. Microstructures, crystallography of interfaces, and creep behavior of melt-growth composites. Journal of the European Ceramic Society, 2008,28:2301-2308.
DOI URL |
[25] |
WANG X, TIAN Z L, ZHANG W, et al. Mechanical properties of directionally solidified Al2O3/Y3Al5O12 eutectic ceramic prepared by optical floating zone technique. Journal of the European Ceramic Society, 2018,38:3610-3617.
DOI URL |
[26] |
FRAZER C S, DICKEY E C, SAYIR A. Crystallographic texture and orientation variants in Al2O3-Y3Al5O12 directionally solidified eutectic crystals. Journal of Crystal Growth, 2001,233:187-195.
DOI URL |
[27] |
SAKATA S, MITANI A, SHIMIZU K, et al. Crystallographic orientation analysis and high temperature strength of melt growth composite. Journal of the European Ceramic Society, 2005,25:1441-1445.
DOI URL |
[28] |
SU H J, ZHANG J, MA W D, et al. In situ fabrication of highly-dense Al2O3/YAG nanoeutectic composite ceramics by a modified laser surface processing. Journal of the European Ceramic Society, 2014,34:739-744.
DOI URL |
[29] |
WANG X, WANG D, ZHANG H, et al. Mechanism of eutectic growth in directional solidification of an Al2O3/Y3Al5O12 crystal, Scripta Materialia, 2016,116:44-48.
DOI URL |
[1] | HE Danqi, WEI Mingxu, LIU Ruizhi, TANG Zhixin, ZHAI Pengcheng, ZHAO Wenyu. Heavy-Fermion YbAl3 Materials: One-step Synthesis and Enhanced Thermoelectric Performance [J]. Journal of Inorganic Materials, 2023, 38(5): 577-582. |
[2] | WU Shuang, GOU Yanzi, WANG Yongshou, SONG Quzhi, ZHANG Qingyu, WANG Yingde. Effect of Heat Treatment on Composition, Microstructure and Mechanical Property of Domestic KD-SA SiC Fibers [J]. Journal of Inorganic Materials, 2023, 38(5): 569-576. |
[3] | AN Wenran, HUANG Jingqi, LU Xiangrong, JIANG Jianing, DENG Longhui, CAO Xueqiang. Effect of Heat-treatment Temperature on Thermal and Mechanical Properties of LaMgAl11O19 Coating [J]. Journal of Inorganic Materials, 2022, 37(9): 925-932. |
[4] | LI Wenjun, WANG Hao, TU Bingtian, CHEN Qiangguo, ZHENG Kaiping, WANG Weiming, FU Zhengyi. Preparation and Property of Mg0.9Al2.08O3.97N0.03 Transparent Ceramic with Broad Optical Transmission Range [J]. Journal of Inorganic Materials, 2022, 37(9): 969-975. |
[5] | ZHANG Ye, ZENG Yuping. Progress of Porous Silicon Nitride Ceramics Prepared via Self-propagating High Temperature Synthesis [J]. Journal of Inorganic Materials, 2022, 37(8): 853-864. |
[6] | HONG Du, NIU Yaran, LI Hong, ZHONG Xin, ZHENG Xuebin. Tribological Properties of Plasma Sprayed TiC-Graphite Composite Coatings [J]. Journal of Inorganic Materials, 2022, 37(6): 643-650. |
[7] | XU Puhao, ZHANG Xiangzhao, LIU Guiwu, ZHANG Mingfen, GUI Xinyi, QIAO Guanjun. Microstructure and Mechanical Properties of SiC Joint Brazed by Al-Ti Alloys as Filler Metal [J]. Journal of Inorganic Materials, 2022, 37(6): 683-690. |
[8] | XIA Qian, SUN Shihao, ZHAO Yiliang, ZHANG Cuiping, RU Hongqiang, WANG Wei, YUE Xinyan. Effect of Boron Carbide Particle Size Distribution on the Microstructure and Properties of Reaction Bonded Boron Carbide Ceramic Composites by Silicon Infiltration [J]. Journal of Inorganic Materials, 2022, 37(6): 636-642. |
[9] | DING Jianxiang, ZHANG Kaige, LIU Dongming, ZHENG Wei, ZHANG Peigen, SUN Zhengming. Ag-based Electrical Contact Material Reinforced by Ti3AlC2 Ceramic and Its Derivative Ti3C2Tx [J]. Journal of Inorganic Materials, 2022, 37(5): 567-573. |
[10] | WEI Tingting, GAO Xiguang, SONG Yingdong. Response of 2D SiC/SiC Composites Resistivity to Service Environments [J]. Journal of Inorganic Materials, 2022, 37(4): 420-426. |
[11] | LIU Haifang, SU Haijun, SHEN Zhonglin, JIANG Hao, ZHAO Di, LIU Yuan, ZHANG Jun, LIU Lin, FU Hengzhi. Research Progress on Ultrahigh Temperature Oxide Eutectic Ceramics by Laser Additive Manufacturing [J]. Journal of Inorganic Materials, 2022, 37(3): 255-266. |
[12] | HUANG Longzhi, YIN Jie, CHEN Xiao, WANG Xinguang, LIU Xuejian, HUANG Zhengren. Selective Laser Sintering of SiC Green Body with Low Binder Content [J]. Journal of Inorganic Materials, 2022, 37(3): 347-352. |
[13] | SUN Yangshan, YANG Zhihua, CAI Delong, ZHANG Zhengyi, LIU Qi, FANG Shuqing, FENG Liang, SHI Lifen, WANG Youle, JIA Dechang. Crystallization Kinetics, Properties of α-cordierite Based Glass-ceramics Prepared by Glass Powder Sintering [J]. Journal of Inorganic Materials, 2022, 37(12): 1351-1357. |
[14] | WU Xishi, ZHU Yunzhou, HUANG Qing, HUANG Zhengren. Effect of Pore Structure of Organic Resin-based Porous Carbon on Joining Properties of Cf/SiC Composites [J]. Journal of Inorganic Materials, 2022, 37(12): 1275-1280. |
[15] | DONG Kangjia, JIANG Chen, REN Shaobin, LANG Xiaohu, GAO Rui, YE Hui. Anisotropic Calculation of Mechanical Property of GaAs Crystal [J]. Journal of Inorganic Materials, 2021, 36(6): 645-651. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||