Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (6): 669-674.DOI: 10.15541/jim20200078
Special Issue: 结构陶瓷论文精选(二)
• RESEARCH PAPER • Previous Articles Next Articles
JI Xiaojuan1,2,YU Yueguang2(),LU Xiaoliang2
Received:
2020-02-18
Revised:
2020-03-01
Published:
2020-06-20
Online:
2020-03-05
Supported by:
CLC Number:
JI Xiaojuan,YU Yueguang,LU Xiaoliang. Effects of Impurities on Properties of YSZ Thermal Barrier Coatings[J]. Journal of Inorganic Materials, 2020, 35(6): 669-674.
ZrO2 | HfO2 | TiO2 | SiO2 | MgO | Fe2O3 |
---|---|---|---|---|---|
90.28 | 1.55 | <0.01 | <0.01 | <0.01 | <0.01 |
Y2O3 | Al2O3 | CaO | Na2O | K2O | |
7.92 | 0.011 | <0.01 | <0.01 | <0.01 |
Table 1 Chemical composition of YSZ raw materials (wt%)
ZrO2 | HfO2 | TiO2 | SiO2 | MgO | Fe2O3 |
---|---|---|---|---|---|
90.28 | 1.55 | <0.01 | <0.01 | <0.01 | <0.01 |
Y2O3 | Al2O3 | CaO | Na2O | K2O | |
7.92 | 0.011 | <0.01 | <0.01 | <0.01 |
No. | SiO2 | No. | Al2O3 | No. | Fe2O3 | |||
---|---|---|---|---|---|---|---|---|
D | M | D | M | D | M | |||
HP | <0.01 | <0.01 | — | <0.01 | <0.01 | — | <0.01 | 0.0049 |
S1 | 0.02 | 0.013 | A1 | 0.02 | 0.014 | F1 | 0.02 | 0.0140 |
S2 | 0.06 | 0.038 | A2 | 0.06 | 0.030 | F2 | 0.06 | 0.0390 |
S3 | 0.10 | 0.064 | A3 | 0.10 | 0.051 | F3 | 0.10 | 0.0800 |
S4 | 0.16 | 0.110 | A4 | 0.15 | 0.079 | F4 | 0.16 | 0.1100 |
S5 | 0.20 | 0.150 | A5 | 0.20 | 0.120 | F5 | 0.20 | 0.1400 |
S6 | 0.36 | 0.260 | A6 | 0.35 | 0.230 | F6 | 0.36 | 0.3000 |
S7 | 0.50 | 0.320 | A7 | 0.50 | 0.300 | F7 | 0.50 | 0.3400 |
S8 | 0.66 | 0.430 | A8 | 0.65 | 0.380 | F8 | 0.66 | 0.4600 |
S9 | 0.80 | 0.550 | A9 | 0.80 | 0.450 | F9 | 0.80 | 0.5700 |
S10 | 1.00 | 0.620 | A10 | 1.00 | 0.640 | F10 | 1.00 | 0.5900 |
Table 2 Design composition (D) of YSZ powders and measured composition (M) of YSZ coatings (wt%)
No. | SiO2 | No. | Al2O3 | No. | Fe2O3 | |||
---|---|---|---|---|---|---|---|---|
D | M | D | M | D | M | |||
HP | <0.01 | <0.01 | — | <0.01 | <0.01 | — | <0.01 | 0.0049 |
S1 | 0.02 | 0.013 | A1 | 0.02 | 0.014 | F1 | 0.02 | 0.0140 |
S2 | 0.06 | 0.038 | A2 | 0.06 | 0.030 | F2 | 0.06 | 0.0390 |
S3 | 0.10 | 0.064 | A3 | 0.10 | 0.051 | F3 | 0.10 | 0.0800 |
S4 | 0.16 | 0.110 | A4 | 0.15 | 0.079 | F4 | 0.16 | 0.1100 |
S5 | 0.20 | 0.150 | A5 | 0.20 | 0.120 | F5 | 0.20 | 0.1400 |
S6 | 0.36 | 0.260 | A6 | 0.35 | 0.230 | F6 | 0.36 | 0.3000 |
S7 | 0.50 | 0.320 | A7 | 0.50 | 0.300 | F7 | 0.50 | 0.3400 |
S8 | 0.66 | 0.430 | A8 | 0.65 | 0.380 | F8 | 0.66 | 0.4600 |
S9 | 0.80 | 0.550 | A9 | 0.80 | 0.450 | F9 | 0.80 | 0.5700 |
S10 | 1.00 | 0.620 | A10 | 1.00 | 0.640 | F10 | 1.00 | 0.5900 |
Coal oil /(L·h-1) | O2 /(L·min-1) | Ar (Carrier gas) /(L·min-1) | Powder feeding rate/(g·min-1) | Distance/ mm |
---|---|---|---|---|
26 | 900 | 8 | 75 | 380 |
Table 3 Parameters of HVOF process
Coal oil /(L·h-1) | O2 /(L·min-1) | Ar (Carrier gas) /(L·min-1) | Powder feeding rate/(g·min-1) | Distance/ mm |
---|---|---|---|---|
26 | 900 | 8 | 75 | 380 |
Current/A | Voltage/V | Power/kW | Distance/mm |
---|---|---|---|
620 | 76 | 47 | 100 |
Ar/(L·min-1) | H2/(L·min-1) | Ar(Carrier gas)/ (L·min-1) | Powder feeding rate/(g·min-1) |
38 | 13 | 4.5 | 30 |
Table 4 Parameters of APS process
Current/A | Voltage/V | Power/kW | Distance/mm |
---|---|---|---|
620 | 76 | 47 | 100 |
Ar/(L·min-1) | H2/(L·min-1) | Ar(Carrier gas)/ (L·min-1) | Powder feeding rate/(g·min-1) |
38 | 13 | 4.5 | 30 |
[1] |
DAROLIA R . Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects. International Materials Reviews, 2013,58(6):315-348.
DOI URL |
[2] | CURRY N, MARKOCSAN N, LI X H , et al. Next generation thermal barrier coatings for the gas turbine industry. Journal of Thermal Spray Technology, 2011,20(1/2):108-115. |
[3] | STӦVER D, PRACHT G, LEHMANN H , et al. New material concepts for the next generation of plasma-sprayed thermal barrier coatings. Journal of Thermal Spray Technology, 2004,13(1):76-83. |
[4] | XUE Z L, GUO H B, GONG S K , et al. Novel ceramic materials for thermal barrier coatings. Journal of Aeronautical Materials, 2018,38(2):10-20. |
[5] | CURRY N, JANIKOWSKI W, PALA Z , et al. Impact of impurity content on the sintering resistance and phase stability of dysprosia- and yttria-stabilized zirconia thermal barrier coatings. Journal of Thermal Spray Technology, 2014,23(1/2):160-169. |
[6] | LYU G, CHOI B G, LU Z , et al. Effect of thermal cycling frequency on the durability of Yb-Gd-Y-based thermal barrier coatings. Surface & Coatings Technology, 2019,364:187-195. |
[7] | GORAL M, KOTOWSKI S, NOWOTNIK A , et al. PS-PVD deposition of thermal barrier coatings. Surface & Coatings Technology, 2013,237:51-55. |
[8] | ŁATKA L . Thermal barrier coatings manufactured by suspension plasma spraying- a review. Advances in Materials Science, 2018,18(3):95-117. |
[9] | JONNALAGADDA K P, ERIKSSON R, LI X H , et al. Thermal barrier coatings: life model development and validation. Surface & Coatings Technology, 2019,362:293-301. |
[10] | PARK H M, JUN S H, LYU G , et al. Thermal durability of thermal barrier coatings in furnace cyclic thermal fatigue test: effects of purity and monoclinic phase in feedstock powder. Journal of the Korean Ceramic Society, 2018,55(6):608-617. |
[11] | KARLSSON A M . Modeling failures of thermal barrier coatings. Key Engineering Materials, 2007,333:155-166. |
[12] | HUA J J, ZHANG L P, LIU Z W , et al. Progress of research on the failure mechanism of thermal barrier coatings. Journal of Inorganic Materials, 2012,27(7):681-686. |
[13] | MATSUI K . Sintering kinetics at constant rates of heating: mechanism of silica-enhanced sintering of fine zirconia powder. Journal of the American Ceramic Society, 2008,91(8):2534-2539. |
[14] | TSIPAS S A, GOLOSNOY I O, DAMANI R , et al. The effect of a high thermal gradient on sintering and stiffening in the top coat of a thermal barrier coating system. Journal of Thermal Spray Technology, 2004,13(3):370-376. |
[15] | CHOI S R, ZHU D M, MILLER R A . Effect of sintering on mechanical properties of plasma-sprayed zirconia-based thermal barrier coatings. Journal of the American Ceramic Society, 2005,88(10):2859-2867. |
[16] | VAβEN R, CZECH N, MALLÉNER W , et al. Influence of impurity content and porosity of plasma-sprayed yttria-stabilized zirconia layers on the sintering behaviour. Surface and Coatings Technology, 2001,141:135-140. |
[17] | PAUL S, CIPITRIA A, GOLOSNOY I O , et al. Effects of impurity content on the sintering characteristics of plasma-sprayed zirconia. Journal of Thermal Spray Technology, 2007,16(5/6):798-803. |
[18] |
XIE L, DORFMAN M R, CIPITRIA A , et al. Properties and performance of high-purity thermal barrier coatings. Journal of Thermal Spray Technology, 2007,16(5/6):804-808.
DOI URL |
[19] | HELMINIAK M A, YANAR N M, PETTIT F S , et al. The behavior of high-purity, low-density air plasma sprayed thermal barrier coatings. Surface & Coatings Technology, 2009,204:793-796. |
[20] | MARKOCSAN N, NYLÉN P, WIGREN J, et al. Low thermal conductivity coatings for gas turbine applications. Journal of Thermal Spray Technology, 2007,16(4):498-505. |
[21] | ZHU D M, MILLER R A . Development of advanced low conductivity thermal barrier coatings. International Journal of Applied Ceramic Technology, 2004,1(1):86-94. |
[22] | WANG L, WANG Y, SUN X G , et al. Influence of pores on the thermal insulation behavior of thermal barrier coatings prepared by atmospheric plasma spray. Materials and Design, 2011,32:36-47. |
[23] | ZHU D M, MILLER R A . Thermal conductivity and elastic modulus evolution of thermal barrier coatings under high heat flux conditions. Journal of Thermal Spray Technology, 2000,9(2):175-180. |
[24] | ZHU D M, MILLER R A, NAGARAJ B A , et al. Thermal conductivity of EB-PVD thermal barrier coatings evaluated by a steady- state laser heat flux technique. Surface and Coatings Technology, 2001,138:1-8. |
[25] | LI Y J, YU Y G, JI X J , et al. Effects of Al2O3 content on properties of YSZ thermal barrier coatings. Thermal Spray Technology, 2018,10(1):61-67. |
[26] | GREMILLARD L, EPICIER T, CHEVALIER J , et al. Microstructural stucy of silica-doped zirconia ceramics. Acta Materialia, 2000,48:4647-4652. |
[27] | HODGSON S N B, CAWLEY J, CLUBLEY M . The role of SiO2 impurities in the microstructure and properties of Y-TZP. Journal of Materials Processing Technology, 1999,86:139-145. |
[28] | MATSUI K, YOSHIDA H, IKUHARA Y . Phase-transformation and grain-growth kinetics in yttria-stabilized tetragonal zirconia polycrystal doped with a small amount of alumina. Journal of the European Ceramic Society, 2010,30:1679-1690. |
[29] | SAKKA Y, ISHII T, SUZUKI T S , et al. Fabrication of high-strain rate superplastic yttria-doped zirconia polycrystals by adding manganese and aluminum oxides. Journal of the European Ceramic Society, 2004,24:449-453. |
[30] |
WU S X, BROOK R J . Kinetics of densification in stabilized zirconia. Solid State Ionics, 1984,14:123-130.
DOI URL |
[1] | CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review [J]. Journal of Inorganic Materials, 2023, 38(6): 634-646. |
[2] | ZHANG Shuo, FU Qiangang, ZHANG Pei, FEI Jie, LI Wei. Influence of High Temperature Treatment of C/C Porous Preform on Friction and Wear Behavior of C/C-SiC Composites [J]. Journal of Inorganic Materials, 2023, 38(5): 561-568. |
[3] | WANG Huajin, KOU Huamin, WANG Yongzhe, JIANG Dapeng, ZHANG Bo, QIAN Xiaobo, WANG Jingya, ZHU Linling, ZENG Aijun, YANG Qiuhong, SU Liangbi. Irradiation Damage of CaF2 with Different Yttrium Concentrations under 193 nm Laser [J]. Journal of Inorganic Materials, 2023, 38(2): 219-224. |
[4] | PAN Yangyang, LIANG Bo, HONG Du, QI Zhixiang, NIU Yaran, ZHENG Xuebin. High Temperature Long-term Service Performance of TiAlCrY/YSZ Coating on TiAl Alloy [J]. Journal of Inorganic Materials, 2023, 38(1): 105-112. |
[5] | HU Jiajun, WANG Kai, HOU Xinguang, YANG Ting, XIA Hongyan. Boron Phosphide with High Thermal Conductivity: Synthesis by Molten Salt Method and Thermal Management Performance [J]. Journal of Inorganic Materials, 2022, 37(9): 933-940. |
[6] | AN Wenran, HUANG Jingqi, LU Xiangrong, JIANG Jianing, DENG Longhui, CAO Xueqiang. Effect of Heat-treatment Temperature on Thermal and Mechanical Properties of LaMgAl11O19 Coating [J]. Journal of Inorganic Materials, 2022, 37(9): 925-932. |
[7] | FU Shi, YANG Zengchao, LI Honghua, WANG Liang, LI Jiangtao. Mechanical Properties and Thermal Conductivity of Si3N4 Ceramics with Composite Sintering Additives [J]. Journal of Inorganic Materials, 2022, 37(9): 947-953. |
[8] | LIU Qiang, WANG Qian, CHEN Penghui, LI Xiaoying, ZHANG Lixuan, XIE Tengfei, LI Jiang. Fabrication and Characterizations of Red Ce-doped 8YSZ Transparent Ceramics by Two-step Sintering [J]. Journal of Inorganic Materials, 2022, 37(8): 911-917. |
[9] | WANG Pengjiang, KANG Huijun, YANG Xiong, LIU Ying, CHENG Cheng, WANG Tongmin. Inhibition of Lattice Thermal Conductivity of ZrNiSn-based Half-Heusler Thermoelectric Materials by Entropy Adjustment [J]. Journal of Inorganic Materials, 2022, 37(7): 717-723. |
[10] | RUAN Jing, YANG Jinshan, YAN Jingyi, YOU Xiao, WANG Mengmeng, HU Jianbao, ZHANG Xiangyu, DING Yusheng, DONG Shaoming. Porous SiC Ceramic Matrix Composite Reinforced by SiC Nanowires with High Strength and Low Thermal Conductivity [J]. Journal of Inorganic Materials, 2022, 37(4): 459-466. |
[11] | LOU Xunuo, DENG Houquan, LI Shuang, ZHANG Qingtang, XIONG Wenjie, TANG Guodong. Thermal and Electrcial Transport Properities of Ge Doped MnTe Thermoelectrics [J]. Journal of Inorganic Materials, 2022, 37(2): 209-214. |
[12] | WEI Hailang, CAO Xueqiang, DENG Longhui, JIANG Jianing. Thermodynamic Properties and Thermal Cycling Lifetimes of LaMeAl11O19/YSZ Thermal Barrier Coatings [J]. Journal of Inorganic Materials, 2022, 37(12): 1259-1266. |
[13] | HAO Hongjian, LI Haiyan, WAN Detian, BAO Yiwang, LI Yueming. Enhanced Flexural Strength and Thermal Shock Resistance of Alumina Ceramics by Mullite/Alumina Pre-stressed Coating [J]. Journal of Inorganic Materials, 2022, 37(12): 1295-1301. |
[14] | WANG Weide, CHEN Huanbei, LI Shishuai, YAO Dongxu, ZUO Kaihui, ZENG Yuping. Preparation of Silicon Nitride with High Thermal Conductivity and High Flexural Strength Using YbH2-MgO as Sintering Additive [J]. Journal of Inorganic Materials, 2021, 36(9): 959-966. |
[15] | WANG Haoxuan, LIU Qiaomu, WANG Yiguang. Research Progress of High Entropy Transition Metal Carbide Ceramics [J]. Journal of Inorganic Materials, 2021, 36(4): 355-364. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||