Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (6): 669-674.DOI: 10.15541/jim20200078
Special Issue: 结构陶瓷论文精选(二)
• RESEARCH PAPER • Previous Articles Next Articles
JI Xiaojuan1,2,YU Yueguang2(),LU Xiaoliang2
Received:
2020-02-18
Revised:
2020-03-01
Published:
2020-06-20
Online:
2020-03-05
Supported by:
CLC Number:
JI Xiaojuan,YU Yueguang,LU Xiaoliang. Effects of Impurities on Properties of YSZ Thermal Barrier Coatings[J]. Journal of Inorganic Materials, 2020, 35(6): 669-674.
ZrO2 | HfO2 | TiO2 | SiO2 | MgO | Fe2O3 |
---|---|---|---|---|---|
90.28 | 1.55 | <0.01 | <0.01 | <0.01 | <0.01 |
Y2O3 | Al2O3 | CaO | Na2O | K2O | |
7.92 | 0.011 | <0.01 | <0.01 | <0.01 |
Table 1 Chemical composition of YSZ raw materials (wt%)
ZrO2 | HfO2 | TiO2 | SiO2 | MgO | Fe2O3 |
---|---|---|---|---|---|
90.28 | 1.55 | <0.01 | <0.01 | <0.01 | <0.01 |
Y2O3 | Al2O3 | CaO | Na2O | K2O | |
7.92 | 0.011 | <0.01 | <0.01 | <0.01 |
No. | SiO2 | No. | Al2O3 | No. | Fe2O3 | |||
---|---|---|---|---|---|---|---|---|
D | M | D | M | D | M | |||
HP | <0.01 | <0.01 | — | <0.01 | <0.01 | — | <0.01 | 0.0049 |
S1 | 0.02 | 0.013 | A1 | 0.02 | 0.014 | F1 | 0.02 | 0.0140 |
S2 | 0.06 | 0.038 | A2 | 0.06 | 0.030 | F2 | 0.06 | 0.0390 |
S3 | 0.10 | 0.064 | A3 | 0.10 | 0.051 | F3 | 0.10 | 0.0800 |
S4 | 0.16 | 0.110 | A4 | 0.15 | 0.079 | F4 | 0.16 | 0.1100 |
S5 | 0.20 | 0.150 | A5 | 0.20 | 0.120 | F5 | 0.20 | 0.1400 |
S6 | 0.36 | 0.260 | A6 | 0.35 | 0.230 | F6 | 0.36 | 0.3000 |
S7 | 0.50 | 0.320 | A7 | 0.50 | 0.300 | F7 | 0.50 | 0.3400 |
S8 | 0.66 | 0.430 | A8 | 0.65 | 0.380 | F8 | 0.66 | 0.4600 |
S9 | 0.80 | 0.550 | A9 | 0.80 | 0.450 | F9 | 0.80 | 0.5700 |
S10 | 1.00 | 0.620 | A10 | 1.00 | 0.640 | F10 | 1.00 | 0.5900 |
Table 2 Design composition (D) of YSZ powders and measured composition (M) of YSZ coatings (wt%)
No. | SiO2 | No. | Al2O3 | No. | Fe2O3 | |||
---|---|---|---|---|---|---|---|---|
D | M | D | M | D | M | |||
HP | <0.01 | <0.01 | — | <0.01 | <0.01 | — | <0.01 | 0.0049 |
S1 | 0.02 | 0.013 | A1 | 0.02 | 0.014 | F1 | 0.02 | 0.0140 |
S2 | 0.06 | 0.038 | A2 | 0.06 | 0.030 | F2 | 0.06 | 0.0390 |
S3 | 0.10 | 0.064 | A3 | 0.10 | 0.051 | F3 | 0.10 | 0.0800 |
S4 | 0.16 | 0.110 | A4 | 0.15 | 0.079 | F4 | 0.16 | 0.1100 |
S5 | 0.20 | 0.150 | A5 | 0.20 | 0.120 | F5 | 0.20 | 0.1400 |
S6 | 0.36 | 0.260 | A6 | 0.35 | 0.230 | F6 | 0.36 | 0.3000 |
S7 | 0.50 | 0.320 | A7 | 0.50 | 0.300 | F7 | 0.50 | 0.3400 |
S8 | 0.66 | 0.430 | A8 | 0.65 | 0.380 | F8 | 0.66 | 0.4600 |
S9 | 0.80 | 0.550 | A9 | 0.80 | 0.450 | F9 | 0.80 | 0.5700 |
S10 | 1.00 | 0.620 | A10 | 1.00 | 0.640 | F10 | 1.00 | 0.5900 |
Coal oil /(L·h-1) | O2 /(L·min-1) | Ar (Carrier gas) /(L·min-1) | Powder feeding rate/(g·min-1) | Distance/ mm |
---|---|---|---|---|
26 | 900 | 8 | 75 | 380 |
Table 3 Parameters of HVOF process
Coal oil /(L·h-1) | O2 /(L·min-1) | Ar (Carrier gas) /(L·min-1) | Powder feeding rate/(g·min-1) | Distance/ mm |
---|---|---|---|---|
26 | 900 | 8 | 75 | 380 |
Current/A | Voltage/V | Power/kW | Distance/mm |
---|---|---|---|
620 | 76 | 47 | 100 |
Ar/(L·min-1) | H2/(L·min-1) | Ar(Carrier gas)/ (L·min-1) | Powder feeding rate/(g·min-1) |
38 | 13 | 4.5 | 30 |
Table 4 Parameters of APS process
Current/A | Voltage/V | Power/kW | Distance/mm |
---|---|---|---|
620 | 76 | 47 | 100 |
Ar/(L·min-1) | H2/(L·min-1) | Ar(Carrier gas)/ (L·min-1) | Powder feeding rate/(g·min-1) |
38 | 13 | 4.5 | 30 |
[1] |
DAROLIA R . Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects. International Materials Reviews, 2013,58(6):315-348.
DOI URL |
[2] | CURRY N, MARKOCSAN N, LI X H , et al. Next generation thermal barrier coatings for the gas turbine industry. Journal of Thermal Spray Technology, 2011,20(1/2):108-115. |
[3] | STӦVER D, PRACHT G, LEHMANN H , et al. New material concepts for the next generation of plasma-sprayed thermal barrier coatings. Journal of Thermal Spray Technology, 2004,13(1):76-83. |
[4] | XUE Z L, GUO H B, GONG S K , et al. Novel ceramic materials for thermal barrier coatings. Journal of Aeronautical Materials, 2018,38(2):10-20. |
[5] | CURRY N, JANIKOWSKI W, PALA Z , et al. Impact of impurity content on the sintering resistance and phase stability of dysprosia- and yttria-stabilized zirconia thermal barrier coatings. Journal of Thermal Spray Technology, 2014,23(1/2):160-169. |
[6] | LYU G, CHOI B G, LU Z , et al. Effect of thermal cycling frequency on the durability of Yb-Gd-Y-based thermal barrier coatings. Surface & Coatings Technology, 2019,364:187-195. |
[7] | GORAL M, KOTOWSKI S, NOWOTNIK A , et al. PS-PVD deposition of thermal barrier coatings. Surface & Coatings Technology, 2013,237:51-55. |
[8] | ŁATKA L . Thermal barrier coatings manufactured by suspension plasma spraying- a review. Advances in Materials Science, 2018,18(3):95-117. |
[9] | JONNALAGADDA K P, ERIKSSON R, LI X H , et al. Thermal barrier coatings: life model development and validation. Surface & Coatings Technology, 2019,362:293-301. |
[10] | PARK H M, JUN S H, LYU G , et al. Thermal durability of thermal barrier coatings in furnace cyclic thermal fatigue test: effects of purity and monoclinic phase in feedstock powder. Journal of the Korean Ceramic Society, 2018,55(6):608-617. |
[11] | KARLSSON A M . Modeling failures of thermal barrier coatings. Key Engineering Materials, 2007,333:155-166. |
[12] | HUA J J, ZHANG L P, LIU Z W , et al. Progress of research on the failure mechanism of thermal barrier coatings. Journal of Inorganic Materials, 2012,27(7):681-686. |
[13] | MATSUI K . Sintering kinetics at constant rates of heating: mechanism of silica-enhanced sintering of fine zirconia powder. Journal of the American Ceramic Society, 2008,91(8):2534-2539. |
[14] | TSIPAS S A, GOLOSNOY I O, DAMANI R , et al. The effect of a high thermal gradient on sintering and stiffening in the top coat of a thermal barrier coating system. Journal of Thermal Spray Technology, 2004,13(3):370-376. |
[15] | CHOI S R, ZHU D M, MILLER R A . Effect of sintering on mechanical properties of plasma-sprayed zirconia-based thermal barrier coatings. Journal of the American Ceramic Society, 2005,88(10):2859-2867. |
[16] | VAβEN R, CZECH N, MALLÉNER W , et al. Influence of impurity content and porosity of plasma-sprayed yttria-stabilized zirconia layers on the sintering behaviour. Surface and Coatings Technology, 2001,141:135-140. |
[17] | PAUL S, CIPITRIA A, GOLOSNOY I O , et al. Effects of impurity content on the sintering characteristics of plasma-sprayed zirconia. Journal of Thermal Spray Technology, 2007,16(5/6):798-803. |
[18] |
XIE L, DORFMAN M R, CIPITRIA A , et al. Properties and performance of high-purity thermal barrier coatings. Journal of Thermal Spray Technology, 2007,16(5/6):804-808.
DOI URL |
[19] | HELMINIAK M A, YANAR N M, PETTIT F S , et al. The behavior of high-purity, low-density air plasma sprayed thermal barrier coatings. Surface & Coatings Technology, 2009,204:793-796. |
[20] | MARKOCSAN N, NYLÉN P, WIGREN J, et al. Low thermal conductivity coatings for gas turbine applications. Journal of Thermal Spray Technology, 2007,16(4):498-505. |
[21] | ZHU D M, MILLER R A . Development of advanced low conductivity thermal barrier coatings. International Journal of Applied Ceramic Technology, 2004,1(1):86-94. |
[22] | WANG L, WANG Y, SUN X G , et al. Influence of pores on the thermal insulation behavior of thermal barrier coatings prepared by atmospheric plasma spray. Materials and Design, 2011,32:36-47. |
[23] | ZHU D M, MILLER R A . Thermal conductivity and elastic modulus evolution of thermal barrier coatings under high heat flux conditions. Journal of Thermal Spray Technology, 2000,9(2):175-180. |
[24] | ZHU D M, MILLER R A, NAGARAJ B A , et al. Thermal conductivity of EB-PVD thermal barrier coatings evaluated by a steady- state laser heat flux technique. Surface and Coatings Technology, 2001,138:1-8. |
[25] | LI Y J, YU Y G, JI X J , et al. Effects of Al2O3 content on properties of YSZ thermal barrier coatings. Thermal Spray Technology, 2018,10(1):61-67. |
[26] | GREMILLARD L, EPICIER T, CHEVALIER J , et al. Microstructural stucy of silica-doped zirconia ceramics. Acta Materialia, 2000,48:4647-4652. |
[27] | HODGSON S N B, CAWLEY J, CLUBLEY M . The role of SiO2 impurities in the microstructure and properties of Y-TZP. Journal of Materials Processing Technology, 1999,86:139-145. |
[28] | MATSUI K, YOSHIDA H, IKUHARA Y . Phase-transformation and grain-growth kinetics in yttria-stabilized tetragonal zirconia polycrystal doped with a small amount of alumina. Journal of the European Ceramic Society, 2010,30:1679-1690. |
[29] | SAKKA Y, ISHII T, SUZUKI T S , et al. Fabrication of high-strain rate superplastic yttria-doped zirconia polycrystals by adding manganese and aluminum oxides. Journal of the European Ceramic Society, 2004,24:449-453. |
[30] |
WU S X, BROOK R J . Kinetics of densification in stabilized zirconia. Solid State Ionics, 1984,14:123-130.
DOI URL |
[1] | FAN Wugang, CAO Xiong, ZHOU Xiang, LI Ling, ZHAO Guannan, ZHANG Zhaoquan. Anticorrosion Performance of 8YSZ Ceramics in Simulated Aqueous Environment of Pressurized Water Reactor [J]. Journal of Inorganic Materials, 2024, 39(7): 803-809. |
[2] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[3] | ZHENG Bin, KANG Kai, ZHANG Qing, YE Fang, XIE Jing, JIA Yan, SUN Guodong, CHENG Laifei. Preparation and Thermal Stability of Ti3SiC2 Ceramics by Polymer Derived Ceramics Method [J]. Journal of Inorganic Materials, 2024, 39(6): 733-740. |
[4] | JIN Min, MA Yupeng, WEI Tianran, LIN Siqi, BAI Xudong, SHI Xun, LIU Xuechao. Growth and Characterization of Large-size InSe Crystal from Non-stoichiometric Solution via a Zone Melting Method [J]. Journal of Inorganic Materials, 2024, 39(5): 554-560. |
[5] | WANG Bo, CAI Delong, ZHU Qishuai, LI Daxin, YANG Zhihua, DUAN Xiaoming, LI Yanan, WANG Xuan, JIA Dechang, ZHOU Yu. Mechanical Properties and Thermal Shock Resistance of SrAl2Si2O8 Reinforced BN Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(10): 1182-1188. |
[6] | WANG Shuling, JIANG Meng, WANG Lianjun, JIANG Wan. n-Type Pb-free AgBiSe2 Based Thermoelectric Materials with Stable Cubic Phase Structure [J]. Journal of Inorganic Materials, 2023, 38(7): 807-814. |
[7] | CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review [J]. Journal of Inorganic Materials, 2023, 38(6): 634-646. |
[8] | ZHANG Shuo, FU Qiangang, ZHANG Pei, FEI Jie, LI Wei. Influence of High Temperature Treatment of C/C Porous Preform on Friction and Wear Behavior of C/C-SiC Composites [J]. Journal of Inorganic Materials, 2023, 38(5): 561-568. |
[9] | WANG Huajin, KOU Huamin, WANG Yongzhe, JIANG Dapeng, ZHANG Bo, QIAN Xiaobo, WANG Jingya, ZHU Linling, ZENG Aijun, YANG Qiuhong, SU Liangbi. Irradiation Damage of CaF2 with Different Yttrium Concentrations under 193 nm Laser [J]. Journal of Inorganic Materials, 2023, 38(2): 219-224. |
[10] | FU Shi, YANG Zengchao, LI Jiangtao. Progress of High Strength and High Thermal Conductivity Si3N4 Ceramics for Power Module Packaging [J]. Journal of Inorganic Materials, 2023, 38(10): 1117-1132. |
[11] | SUN Xiaofan, CHEN Xiaowu, JIN Xihai, KAN Yanmei, HU Jianbao, DONG Shaoming. Fabrication and Properties of AlN-SiC Multiphase Ceramics via Low Temperature Reactive Melt Infiltration [J]. Journal of Inorganic Materials, 2023, 38(10): 1223-1229. |
[12] | PAN Yangyang, LIANG Bo, HONG Du, QI Zhixiang, NIU Yaran, ZHENG Xuebin. High Temperature Long-term Service Performance of TiAlCrY/YSZ Coating on TiAl Alloy [J]. Journal of Inorganic Materials, 2023, 38(1): 105-112. |
[13] | AN Wenran, HUANG Jingqi, LU Xiangrong, JIANG Jianing, DENG Longhui, CAO Xueqiang. Effect of Heat-treatment Temperature on Thermal and Mechanical Properties of LaMgAl11O19 Coating [J]. Journal of Inorganic Materials, 2022, 37(9): 925-932. |
[14] | FU Shi, YANG Zengchao, LI Honghua, WANG Liang, LI Jiangtao. Mechanical Properties and Thermal Conductivity of Si3N4 Ceramics with Composite Sintering Additives [J]. Journal of Inorganic Materials, 2022, 37(9): 947-953. |
[15] | HU Jiajun, WANG Kai, HOU Xinguang, YANG Ting, XIA Hongyan. Boron Phosphide with High Thermal Conductivity: Synthesis by Molten Salt Method and Thermal Management Performance [J]. Journal of Inorganic Materials, 2022, 37(9): 933-940. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||