Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (1): 105-112.DOI: 10.15541/jim20220327
Special Issue: 【结构材料】热障与环境障涂层(202409)
• RESEARCH ARTICLE • Previous Articles
PAN Yangyang1,2(), LIANG Bo1(
), HONG Du2, QI Zhixiang3, NIU Yaran2, ZHENG Xuebin2
Received:
2022-06-11
Revised:
2022-07-26
Published:
2023-01-20
Online:
2022-08-04
Contact:
LIANG Bo, professor. E-mail: liangbo@ysu.edu.cnAbout author:
PAN Yangyang (1991-), male, PhD candidate. E-mail: panyangyang4155@163.com
Supported by:
CLC Number:
PAN Yangyang, LIANG Bo, HONG Du, QI Zhixiang, NIU Yaran, ZHENG Xuebin. High Temperature Long-term Service Performance of TiAlCrY/YSZ Coating on TiAl Alloy[J]. Journal of Inorganic Materials, 2023, 38(1): 105-112.
Al | Cr | Y | Ti | Ni | Zr | O | Source | |
---|---|---|---|---|---|---|---|---|
TiAlCrY | 55.0 | 20.0 | 0.4 | 24.6 | — | — | — | Nanjing University of Science and Technology |
NiCrAlY | 14.5 | 20.5 | 1.0 | — | 64.0 | — | — | Institute of Metal Research, Chinese Academy of Sciences |
YSZ | — | — | 3.7 | — | — | 30.3 | 66.0 | Sulzer Metco |
Table 1 Compositions of YSZ, TiAlCrY and NiCrAlY powders (%, in atom)
Al | Cr | Y | Ti | Ni | Zr | O | Source | |
---|---|---|---|---|---|---|---|---|
TiAlCrY | 55.0 | 20.0 | 0.4 | 24.6 | — | — | — | Nanjing University of Science and Technology |
NiCrAlY | 14.5 | 20.5 | 1.0 | — | 64.0 | — | — | Institute of Metal Research, Chinese Academy of Sciences |
YSZ | — | — | 3.7 | — | — | 30.3 | 66.0 | Sulzer Metco |
Coating | Ar/slpm | H2/slpm | Spray distance/mm | Feed rate/(r·min-1) | Power/kW | Vacuum pressure/Pa |
---|---|---|---|---|---|---|
TiAlCrY/ NiCrAlY | 30-40 | 5-15 | 200-300 | 15-30 | 30-40 | 1-3 |
YSZ | 30-40 | 5-15 | 90-130 | 15-30 | 38-48 | — |
Table 2 Spray parameters of YSZ, TiAlCrY and NiCrAlY coatings
Coating | Ar/slpm | H2/slpm | Spray distance/mm | Feed rate/(r·min-1) | Power/kW | Vacuum pressure/Pa |
---|---|---|---|---|---|---|
TiAlCrY/ NiCrAlY | 30-40 | 5-15 | 200-300 | 15-30 | 30-40 | 1-3 |
YSZ | 30-40 | 5-15 | 90-130 | 15-30 | 38-48 | — |
Fig. 4 Cross-sectional morphologies and EDS results of TiAlCrY/YSZ coating after heat-treatment at 1100 ℃ for 100 h (a-d), 200 h (e-h) and 300 h (i-l)
Fig. 6 Cross-sectional morphologies (a) and EBSD results (b, c) of NiCrAlY/YSZ coating after 100 h thermal-treatment at 1100 ℃. Colorful images are available on the website
[1] |
DIMIDUK D M. Gamma titanium aluminide alloys—an assessment within the competition of aerospace structural materials. Materials Science and Engineering: A, 1999, 263(2): 281.
DOI URL |
[2] |
CLEMENS HELMUT, MAYER SVEA. Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys. Advanced Engineering Materials, 2013, 15(4): 191.
DOI URL |
[3] |
CLEMENS HELMUT, KESTLER HEINRICH. Processing and applications of intermetallic γ-TiAl-based alloys. Advanced Engineering Materials, 2000, 2(9): 551.
DOI URL |
[4] | 彭小敏, 夏长清, 王志辉. TiAl 基合金高温氧化及防护的研究进展. 中国有色金属学报, 2010, 20(6): 1116. |
[5] |
CLARKE DAVID R, OECHSNER M, PADTURE N P, et al. Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bulletin, 2012, 37(10): 891.
DOI URL |
[6] |
GLEESON B. Thermal barrier coatings for aeroengine applications. Journal of Propulsion and Power, 2006, 22(2): 375.
DOI URL |
[7] |
LEYENS C, VAN LIERE J W, PETERS M, et al. Magnetron- sputtered Ti-Cr-Al coatings for oxidation protection of titanium alloys. Surface & Coatings Technology, 1998, 108-109(10): 30.
DOI URL |
[8] |
FOX-RABINOVICH G S, WILKINSON D S, VELDHUIS S C, et al. Oxidation resistant Ti-Al-Cr alloy for protective coating applications. Intermetallic, 2006, 14(2): 189.
DOI URL |
[9] | ZHOU C G, YANG Y, GONG S K, et al. Effect of Ti-Al-Cr coatings on the high temperature oxidation behavior of TiAl alloys. Materials Science & Engineering A, 2001, 307(1/2): 182. |
[10] | BRAUN R, BRAUE W, FROHLICH M, et al. Thermally grown oxide scales on gamma-TiAl coated with thermal protection systems. High Temperature Technology, 2009, 26(3): 305. |
[11] |
BRAUN R, FRÖHLICH M, BRAUE W, et al. Oxidation behaviour of gamma titanium aluminides with EB-PVD thermal barrier coatings exposed to air at 900 ℃. Surface & Coatings Technology, 2007, 202(4-7): 676.
DOI URL |
[12] | 唐兆麟, 王福会, 吴维. TiAlCr涂层对TiAl金属间化合物抗高温氧化性能的影响. 中国腐蚀与防护学报, 1998, 18(1): 35. |
[13] |
PAN Y Y, LIANG B, NIU Y R, et al. Thermal shock behaviors of plasma sprayed TiAlCrY/YSZ system on TiAl alloys. Ceramics International, 2022, 48(5): 6199.
DOI URL |
[14] |
PAN Y Y, LIANG B, HONG D, et al. Effect of TiAlCrNb buffer layer on thermal cycling behavior of TiAlCrY/YSZ coatings on γ-TiAl alloys. Surface & Coatings Technology, 2021, 431(15): 128000.
DOI URL |
[15] |
RACHELEH A P, REZA S R, REZA M, et al. Improving the thermal shock resistance of plasma sprayed CYSZ thermal barrier coatings by laser surface modification. Opt. Laser. Eng., 2012, 50(5): 780.
DOI URL |
[16] | 许世鸣, 张小锋, 刘敏, 等. APS制备7YSZ热障涂层镀铝改性的抗氧化性. 材料导报, 2019, 33(1): 283. |
[17] |
JAMALI H, MOZAFARINIA R, RAZAVI R S, et al. Comparison of thermal shock resistances of plasma-sprayed nanostructured and conventional yttria stabilized zirconia thermal barrier coatings, Ceramics International, 2012, 38(8): 6705.
DOI URL |
[18] |
ZHANG X F, ZHOU K S, ZHANG J F, et al. Structure evolution of 7YSZ thermal barrier coating during thermal shock testing. Journal of Inorganic Materials, 2015, 30(12): 1261.
DOI URL |
[19] |
BRADY M P, SMIALEK J L, HUMPHREY D L, et al. The role of Cr in promoting protective alumina scale formation by γ-based Ti-Al-Cr alloys—II. Oxidation behavior in air. Acta Materialia, 1997, 45(6): 2371.
DOI URL |
[20] |
LIU C T, ZHU J H, BRADY M P, et al. Physical metallurgy and mechanical properties of transition-metal Laves phase alloys. Intermetallic, 2000, 8(9/10/11):1119.
DOI URL |
[21] | TAKEYAMA M, LIU C T. Microstructure and mechanical properties of Laves-phase alloys based on Cr2Nb. Materials Science & Engineering A, 1991, 132(91): 61. |
[22] |
WEISS M, LU M, P VAN DER HEIDE, et al. Radiation enhanced diffusion of Ti in Al2O3. Journal of Chemical Physics, 2000, 113(12): 5058.
DOI URL |
[23] |
KLIAUGA A M, Ferrante M. Interface compounds formed during the diffusion bonding of Al2O3 to Ti. Journal of Materials Science, 2000, 35(17): 4243.
DOI URL |
[24] |
HILLE T S, TURTELTAUB S, SUIKER A S J, et al. Oxide growth and damage evolution in thermal barrier coatings. Engineering Fracture Mechanics, 2011, 78(10): 2139.
DOI URL |
[25] |
CUI Y J, GUO M Q, WANG C L, et al. Evolution of the residual stress in porous ceramic abradable coatings under thermal exposure. Surface and Coatings Technology, 2020, 394(25): 125915.
DOI URL |
[26] |
ABBA A A, ABUL F M A, SOHAIL A. Evolution of internal cracks and residual stress during deposition of TBC. Ceramics International, 2020, 46(17): 26731.
DOI URL |
[27] |
LI D, PENG B Z, QU W, et al. Finite-element simulation of residual stress in zirconia thermal barrier coating. Advanced Materials Research, 2011, 311-313: 210.
DOI URL |
[28] |
HILLE T S, TURTELTAUB S, SUIKER A S J. Oxide growth and damage evolution in thermal barrier coatings. Engineering Fracture Mechanics, 2011, 78(10): 2139.
DOI URL |
[29] |
KARUNARATNE M S A, KYAW S, JONES A, et al. Modelling the coefficient of thermal expansion in Ni-based superalloys and bond coatings. Journal of Materials Science, 2016, 51(9): 4213.
DOI URL |
[30] |
LASSEUR V, GOUTIER S, GARCIA V M, et al. Residual stress evolution in zirconia (Y2O38%) coatings during atmospheric plasma spraying for substrates under rotating kinematic. Journal of Thermal Spray Technology, 2020, 29(5/6): 1313.
DOI URL |
[31] | ARAI M, WADA E, KISHIMOTO K. Residual stress analysis of ceramic thermal barrier coating based on thermal spray process. Transactions of the Japan Society of Mechanical Engineers, 2007, 72(717): 1251. |
[1] | MA Wen, SHEN Zhe, LIU Qi, GAO Yuanming, BAI Yu, LI Rongxing. Preparation of Y2O3 Coating by Suspension Plasma Spraying and Its Resistance to Plasma Etching [J]. Journal of Inorganic Materials, 2024, 39(8): 929-936. |
[2] | LI Jie, LUO Zhixin, CUI Yang, ZHANG Guangheng, SUN Luchao, WANG Jingyang. CMAS Corrosion Resistance of Y3Al5O12/Al2O3 Ceramic Coating Deposited by Atmospheric Plasma Spraying [J]. Journal of Inorganic Materials, 2024, 39(6): 671-680. |
[3] | HONG Du, NIU Yaran, LI Hong, ZHONG Xin, ZHENG Xuebin. Tribological Properties of Plasma Sprayed TiC-Graphite Composite Coatings [J]. Journal of Inorganic Materials, 2022, 37(6): 643-650. |
[4] | DAI Zhao,WANG Ming,WANG Shuang,LI Jing,CHEN Xiang,WANG Da-Lin,ZHU Ying-Chun. Zirconia Reinforced Trace Element Co-doped Hydroxyapatite Coating [J]. Journal of Inorganic Materials, 2020, 35(2): 179-186. |
[5] | FAN Jia-Feng,ZHANG Xiao-Feng,ZHOU Ke-Song,LIU Min,DENG Chang-Guang,DENG Chun-Ming,NIU Shao-Peng,DENG Zi-Qian. Influence of Al-modification on CMAS Corrosion Resistance of PS-PVD 7YSZ Thermal Barrier Coatings [J]. Journal of Inorganic Materials, 2019, 34(9): 938-946. |
[6] | XIE Ling-Ling, NIU Ya-Ran, WANG Liang, CHEN Wen-Liang, ZHENG Xue-Bin, HUANG Zhen-Yi. Residual Stresses of Plasma Sprayed ZrC-Based Coatings during Path-by-path and Layer-by-layer Deposition: Simulation and Experimental Verification [J]. Journal of Inorganic Materials, 2019, 34(7): 768-774. |
[7] | Yan-Zhe ZHOU, Min LIU, Kun YANG, Wei ZENG, Jin-Bing SONG, Chun-Ming DENG, Chang-Guang DENG. Microstructure and Property of MoSi2-30Al2O3 Electrothermal Coating Prepared by Atmospheric Plasma Spraying [J]. Journal of Inorganic Materials, 2019, 34(6): 646-652. |
[8] | CHEN Shu-Ying, MA Guo-Zheng, HE Peng-Fei, LIU Zhe, LIU Ming, XING Zhi-Guo, WANG Hai-Dou, WANG Hai-Jun. Pore Formation Mechanism of WC-10Co4Cr Coatings Based on Collected In-flight Particles and Individual Splat [J]. Journal of Inorganic Materials, 2018, 33(8): 895-902. |
[9] | ZHANG Xiao-Feng, ZHOU Ke-Song, LIU Min, DENG Chun-Ming, NIU Shao-Peng, XU Shi-Ming. Preparation of Si/Mullite/Yb2SiO5 Environment Barrier Coating (EBC) by Plasma Spray-Physical Vapor Deposition (PS-PVD) [J]. Journal of Inorganic Materials, 2018, 33(3): 325-330. |
[10] | LI Da-Chuan, ZHAO Hua-Yu, ZHONG Xing-Hua, TAO Shun-Yan. Research Progresses of Atmospheric Plasma Sprayed Splat [J]. Journal of Inorganic Materials, 2017, 32(6): 571-580. |
[11] | SUN Xu-Xuan, CHEN Hong-Fei, YANG Guang, LIU Bin, GAO Yan-Feng. YSZ- Ti3AlC2 Thermal Barrier Coating and Its Self-healing Behavior under High Temperatures [J]. Journal of Inorganic Materials, 2017, 32(12): 1269-1274. |
[12] | YU Fang-Li, BAI Yu, WU Xiu-Ying, Wang Hai-Jun, WU Jiu-Hui. Corrosion Resistance and Anti-wear Property of Nickel Based Abradable Sealing Coating Deposited by Plasma Spraying [J]. Journal of Inorganic Materials, 2016, 31(7): 687-693. |
[13] | LIN Chu-Cheng, KONG Ming-Guang, ZHU Hui-Ying, HUANG Li-Ping, ZHENG Xue-Bin, ZENG Yi. Tribological Behavior of Vacuum Plasma Sprayed B4C-Mo Composite Coating [J]. Journal of Inorganic Materials, 2016, 31(1): 100-106. |
[14] | MAO Jin-Yuan, LIU Min, MAO Jie, DENG Chun-Min, ZENG De-Chang, XU Lin. Oxidation-resistance of ZrB2-MoSi2 Composite Coatings Prepared by Atmospheric Plasma Spraying [J]. Journal of Inorganic Materials, 2015, 30(3): 282-286. |
[15] | ZHANG Xiao-Feng, ZHOU Ke-Song, SONG Jin-Bing, DENG Chun-Ming, NIU Shao-Peng, DENG Zi-Qian. Deposition and CMAS Corrosion Mechanism of 7YSZ Thermal Barrier Coatings Prepared by Plasma Spray-Physical Vapor Deposition [J]. Journal of Inorganic Materials, 2015, 30(3): 287-293. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||