Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (6): 661-668.DOI: 10.15541/jim20190359
Special Issue: 结构陶瓷论文精选(二)
• RESEARCH PAPER • Previous Articles Next Articles
ZHANG Zhigang1,2,LU Xiaotong1,2,LIU Jinli1,2
Received:
2019-07-13
Revised:
2019-08-13
Published:
2020-06-20
Online:
2019-09-04
Supported by:
CLC Number:
ZHANG Zhigang,LU Xiaotong,LIU Jinli. NiFe2O4 Ceramic U-shaped Sleeve Prepared by Slip Casting and Pressureless Sintering[J]. Journal of Inorganic Materials, 2020, 35(6): 661-668.
Position | Particle size/μm | ||
---|---|---|---|
D10 | D50 | D90 | |
Slurry | 0.45 | 2.51 | 5.35 |
TopⅠ | 0.46 | 2.51 | 5.33 |
TopⅡ | 0.45 | 2.52 | 5.34 |
MiddleⅠ | 0.46 | 2.52 | 5.36 |
MiddleⅡ | 0.46 | 2.53 | 5.34 |
BottomⅠ | 0.46 | 2.52 | 5.36 |
BottomⅡ | 0.46 | 2.52 | 5.34 |
Table 1 Particle size distribution in different positions for the same green body
Position | Particle size/μm | ||
---|---|---|---|
D10 | D50 | D90 | |
Slurry | 0.45 | 2.51 | 5.35 |
TopⅠ | 0.46 | 2.51 | 5.33 |
TopⅡ | 0.45 | 2.52 | 5.34 |
MiddleⅠ | 0.46 | 2.52 | 5.36 |
MiddleⅡ | 0.46 | 2.53 | 5.34 |
BottomⅠ | 0.46 | 2.52 | 5.36 |
BottomⅡ | 0.46 | 2.52 | 5.34 |
T/℃ | -1/(m+1) | CR |
---|---|---|
1150 | -0.396 | 0.995 |
1175 | -0.401 | 0.998 |
1200 | -0.403 | 0.990 |
1225 | -0.397 | 0.991 |
1250 | -0.396 | 0.994 |
Average | -0.399 | — |
Table 2 Values of slope and linear regression coef?cient (CR) of relationship between ln(ΔL/L0)T and lnC under different temperatures
T/℃ | -1/(m+1) | CR |
---|---|---|
1150 | -0.396 | 0.995 |
1175 | -0.401 | 0.998 |
1200 | -0.403 | 0.990 |
1225 | -0.397 | 0.991 |
1250 | -0.396 | 0.994 |
Average | -0.399 | — |
Heating rate/(K·min-1) | a | CR |
---|---|---|
5 | -14049 | 0.990 |
10 | -14165 | 0.987 |
20 | -14279 | 0.985 |
Average | -14164 | — |
Table 3 The values of slope (a) and linear regression coef?cient (CR) of relationship between ln[(ΔL/L0)/T] and 1/T at different heating rates
Heating rate/(K·min-1) | a | CR |
---|---|---|
5 | -14049 | 0.990 |
10 | -14165 | 0.987 |
20 | -14279 | 0.985 |
Average | -14164 | — |
[1] | 冯乃祥. 铝电解. 北京: 化学工业出版社, 2006: 113-114. |
[2] |
SOLLI P A, EGGEN T, SKYBAKMOEN E , et al. Current efficiency in the Hall-Heroult process for aluminum electrolysis: experimental and modeling studies. Journal of Applied Electrochemistry, 1997, 27(8):939-946.
DOI URL |
[3] |
STERTEN Å . Current efficiency in aluminum reduction cells. Journal of Applied Electrochemistry, 1988,18(3):473-483.
DOI URL |
[4] |
KOLÅS S, STØRE T . Bath temperature and AlF3 control of an aluminium electrolysis cell. Control Engineering Practice, 2009,17(9):1035-1043.
DOI URL |
[5] |
CONSTANTIN V . Influence of the operating parameters over the current efficiency and corrosion rate in the Hall-Heroult aluminum cell with tin oxide anode substrate material. Chinese Journal of Chemical Engineering, 2015,23(4):722-726.
DOI URL |
[6] |
TAYLOR M P, ZHANG W D, WILLS V , et al. A dynamic model for the energy balance of an electrolysis cell. Chemical Engineering Research and Design, 1996,74(8):913-933.
DOI URL |
[7] |
SAFA Y, FLUECK M, RAPPAZ J . Numerical simulation of thermal problems coupled with magneto hydrodynamic effects in aluminium cell. Applied Mathematical Modelling, 2009,33(3):1479-1492.
DOI URL |
[8] | 刘业翔, 李劼 . 现代铝电解. 北京: 冶金工业出版社, 2008: 172-174. |
[9] | POSMYK A . Co-deposited composite coatings with a ceramic matrix destined for sliding pairs. Surface & Coatings Technology, 2013,206(15):3342-3349. |
[10] |
OLSEN E, THONSTAD J . Nickel ferrite as inert anodes in aluminum electrolysis: Part I Material fabrication and preliminary testing. Journal of Applied Electrochemistry, 1999,29(3):293-299.
DOI URL |
[11] |
MA J, BAO L, YAO G C , et al. Effect of MnO2 addition on properties of NiFe2O4-based cermets. Ceramics International, 2011,37(8):3381-3387.
DOI URL |
[12] |
ZARRABIAN P, KALANTAR M, GHASEMI S S . Fabrication and characterization of nickel ferrite based inert anodes for aluminum electrolysis. Journal of Materials Engineering and Performance, 2014,23(5):1656-1664.
DOI URL |
[13] |
TIAN Z L, LAI Y Q, LI Z Y , et al. Further development on NiFe2O4-based cermet inert anodes for aluminum electrolysis. JOM, 2014,66(11):2229-2234.
DOI URL |
[14] |
ZHANG Z G, YAO G C, LUO H J , et al. Sintering behavior and properties of NiFe2O4 ceramic inert anode toughened by adding NiFe2O4 nanopowder. Journal of Inorganic Materials, 2016,31(7):761-768.
DOI URL |
[15] |
MOUZON J, GLOWACKI E, ODÉN M. Comparison between slip-casting and uniaxial pressing for the fabrication of translucent yttria ceramics. Journal of Materials Science, 2008,43(8):2849-2856.
DOI URL |
[16] |
COMBE E, GUILMEAU E, SAVARY E , et al. Microwave sintering of Ge-doped In2O3 thermoelectric ceramics prepared by slip casting process. Journal of the European Ceramic Society, 2015,35(1):145-151.
DOI URL |
[17] |
ORTIZ A L, CANDELARIO V M, MORENO R , et al. Near-net shape manufacture of B4C-Co and ZrC-Co composites by slip casting and pressureless sintering. Journal of the European Ceramic Society, 2017,37(15):4577-4584.
DOI URL |
[18] |
DENG J, YAO D X, XIA Y F , et al. Gradient porous silicon nitride by slip casting and vacuum foaming. Journal of Inorganic Materials, 2016,31(8):865-868.
DOI URL |
[19] |
HASSANIN H, JIANG K . Fabrication and characterization of stabilised zirconia micro parts via slip casting and soft moulding. Scripta Materialia, 2013,69(6):433-436.
DOI URL |
[20] |
ZHOU J, PAN Y B, ZHANG W X , et al. Fabrication of YAG transparent ceramics using slip casting with ethanol. Journal of Inorganic Materials, 2011,26(3):254-256.
DOI URL |
[21] |
SHAFEIEY A, ENAYATI M H, ALHAJI A . The effect of slip casting and spark plasma sintering (SPS) temperature on the transparency of MgAl2O4 spinel. Ceramics International, 2018,44(4):3536-3540.
DOI URL |
[22] | YANG Z G, YU J B, LI C J , et al. Preparation of textured porous Al2O3 ceramics by slip casting in a strong magnetic field and its mechanical properties. Crystal Research & Technology, 2015,50(8):645-653. |
[23] |
BROUCZEK D, KONEGGER T . Open-porous silicon nitride-based ceramics in tubular geometry obtained by slip-casting and gelcasting. Advanced Engineering Materials, 2017,19(10):1700434.
DOI URL |
[24] |
ZHANG Z G, LIU Y H, YAO G C , et al. Solid-state reaction synthesis of NiFe2O4 nanoparticles by optimizing the synthetic conditions. Physica E: Low-dimensional Systems and Nanostructures, 2012,45:122-129.
DOI URL |
[25] | 马佳 . 制备大尺寸耐火材料型铝电解惰性阳极的研究. 沈阳: 东北大学博士学位论文, 2011. |
[26] | ZHANG R, GAO L, CHENG G F , et al. Fabrication and properties of SiC porous ceramics by slip casting process. Journal of Inorganic Materials, 2002,17(4):725-730. |
[27] | 张志刚 . 纳米增韧NiFe2O4基铝电解惰性阳极的研究. 沈阳: 东北大学博士学位论文, 2013. |
[28] | 严彪, 吴菊清, 李祖德 , 等. 现代粉末冶金手册. 北京: 化学工业出版社, 2013: 110. |
[29] |
LIU X Y, LIU M Y, ZHANG L . Co-adsorption and sequential adsorption of the co-existence four heavy metal ions and three fluoroquinolones on the functionalized ferromagnetic 3D NiFe2O4 porous hollow microsphere. Journal of Colloid and Interface Science, 2018,511:135-144.
DOI URL |
[30] |
BHOSALE S V, BANKAR D N, BHORASKAR S V , et al. Analysis of electrokinetic properties of NiFe2O4 nanoparticles synthesized by DC thermal plasma route and its use in adsorption of humic substances. Journal of Environmental Chemical Engineering, 2016,4(2):1584-1593.
DOI URL |
[31] |
BANNISTER M J . Shape sensitivity of initial sintering equations. Journal of the American Ceramic Society, 1968,51(10):548-553.
DOI URL |
[32] |
KESKI J R, CUTLER I B . Initial sintering of MnXO-Al2O3. Journal of the American Ceramic Society, 1968,51(8):440-444.
DOI URL |
[33] |
WOOLFREY J L, BANNISTER M J . Nonisothermal techniques for studying initial-stage sintering. Journal of the American Ceramic Society, 1972,55(8):390-394.
DOI URL |
[34] |
ZHANG T S, PETER H, HUANG H T , et al. Early-stage sintering mechanisms of Fe-doped CeO2. Journal of Materials Science, 2002,37(5):997-1003.
DOI URL |
[35] |
HANSGN J D, RUSIN R P, TENG M H , et al. Combined-stage sintering model. Journal of the American Ceramic Society, 1992,75(5):1129-1135.
DOI URL |
[1] | JIANG Zongyu, HUANG Honghua, QING Jiang, WANG Hongning, YAO Chao, CHEN Ruoyu. Aluminum Ion Doped MIL-101(Cr): Preparation and VOCs Adsorption Performance [J]. Journal of Inorganic Materials, 2025, 40(7): 747-753. |
[2] | WANG Lujie, ZHANG Yuxin, LI Tongyang, YU Yuan, REN Pengwei, WANG Jianzhang, TANG Huaguo, YAO Xiumin, HUANG Yihua, LIU Xuejian, QIAO Zhuhui. Corrosion and Wear Behavior of Silicon Carbide Ceramic in Deep-sea Service Environment [J]. Journal of Inorganic Materials, 2025, 40(7): 799-807. |
[3] | WEI Zhifan, CHEN Guoqing, ZU Yufei, LIU Yuan, LI Minghao, FU Xuesong, ZHOU Wenlong. ZrB2-HfSi2 Ceramics: Microstructure and Formation Mechanism of Core-rim Structure [J]. Journal of Inorganic Materials, 2025, 40(7): 817-825. |
[4] | YANG Yan, ZHANG Faqiang, MA Mingsheng, WANG Yongzhe, OUYANG Qi, LIU Zhifu. Low Temperature Sintering of ZnAl2O4 Ceramics with CuO-TiO2-Nb2O5 Composite Oxide Sintering Aid [J]. Journal of Inorganic Materials, 2025, 40(6): 711-718. |
[5] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[6] | LIANG Ruihui, ZHONG Xin, HONG Du, HUANG Liping, NIU Yaran, ZHENG Xuebin. High-temperature Water Vapor Corrosion Behaviors of Environmental Barrier Coatings with Yb2O3-modified Silicon Bond Layer [J]. Journal of Inorganic Materials, 2025, 40(4): 425-432. |
[7] | GOU Yanzi, KANG Weifeng, WANG Pengren. Influence of Sintering Conditions on Preparation of Nearly Stoichiometric SiC Fibers with Highly Crystalline Microstructure [J]. Journal of Inorganic Materials, 2025, 40(4): 405-414. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | PAN Zesheng, YOU Yaping, ZHENG Ya, CHEN Haijie, WANG Lianjun, JIANG Wan. Stability of Phosphors for White LED Excitable by Violet Light [J]. Journal of Inorganic Materials, 2025, 40(3): 314-322. |
[11] | FAN Wenkai, YANG Xiao, LI Honghua, LI Yong, LI Jiangtao. Pressureless Sintering of (Y0.2Gd0.2Er0.2Yb0.2Lu0.2)2Zr2O7 High-entropy Ceramic and Its High Temperature CMAS Corrosion Resistance [J]. Journal of Inorganic Materials, 2025, 40(2): 159-167. |
[12] | WANG Zhixiang, CHEN Ying, PANG Qingyang, LI Xin, WANG Genshui. Sintering Behaviour and Dielectric Properties of MnCO3-doped MgO-based Ceramics [J]. Journal of Inorganic Materials, 2025, 40(1): 97-103. |
[13] | ZHANG Jinghui, LU Xiaotong, MAO Haiyan, TIAN Yazhou, ZHANG Shanlin. Effect of Sintering Additives on Sintering Behavior and Conductivity of BaZr0.1Ce0.7Y0.2O3-δ Electrolytes [J]. Journal of Inorganic Materials, 2025, 40(1): 84-90. |
[14] | QU Mujing, ZHANG Shulan, ZHU Mengmeng, DING Haojie, DUAN Jiaxin, DAI Henglong, ZHOU Guohong, LI Huili. CsPbBr3@MIL-53 Nanocomposite Phosphors: Synthesis, Properties and Applications in White LEDs [J]. Journal of Inorganic Materials, 2024, 39(9): 1035-1043. |
[15] | MIAO Xin, YAN Shiqiang, WEI Jindou, WU Chao, FAN Wenhao, CHEN Shaoping. Interface Layer of Te-based Thermoelectric Device: Abnormal Growth and Interface Stability [J]. Journal of Inorganic Materials, 2024, 39(8): 903-910. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||