Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (6): 661-668.DOI: 10.15541/jim20190359
Special Issue: 结构陶瓷论文精选(二)
• RESEARCH PAPER • Previous Articles Next Articles
ZHANG Zhigang1,2,LU Xiaotong1,2,LIU Jinli1,2
Received:
2019-07-13
Revised:
2019-08-13
Published:
2020-06-20
Online:
2019-09-04
Supported by:
CLC Number:
ZHANG Zhigang,LU Xiaotong,LIU Jinli. NiFe2O4 Ceramic U-shaped Sleeve Prepared by Slip Casting and Pressureless Sintering[J]. Journal of Inorganic Materials, 2020, 35(6): 661-668.
Position | Particle size/μm | ||
---|---|---|---|
D10 | D50 | D90 | |
Slurry | 0.45 | 2.51 | 5.35 |
TopⅠ | 0.46 | 2.51 | 5.33 |
TopⅡ | 0.45 | 2.52 | 5.34 |
MiddleⅠ | 0.46 | 2.52 | 5.36 |
MiddleⅡ | 0.46 | 2.53 | 5.34 |
BottomⅠ | 0.46 | 2.52 | 5.36 |
BottomⅡ | 0.46 | 2.52 | 5.34 |
Table 1 Particle size distribution in different positions for the same green body
Position | Particle size/μm | ||
---|---|---|---|
D10 | D50 | D90 | |
Slurry | 0.45 | 2.51 | 5.35 |
TopⅠ | 0.46 | 2.51 | 5.33 |
TopⅡ | 0.45 | 2.52 | 5.34 |
MiddleⅠ | 0.46 | 2.52 | 5.36 |
MiddleⅡ | 0.46 | 2.53 | 5.34 |
BottomⅠ | 0.46 | 2.52 | 5.36 |
BottomⅡ | 0.46 | 2.52 | 5.34 |
T/℃ | -1/(m+1) | CR |
---|---|---|
1150 | -0.396 | 0.995 |
1175 | -0.401 | 0.998 |
1200 | -0.403 | 0.990 |
1225 | -0.397 | 0.991 |
1250 | -0.396 | 0.994 |
Average | -0.399 | — |
Table 2 Values of slope and linear regression coef?cient (CR) of relationship between ln(ΔL/L0)T and lnC under different temperatures
T/℃ | -1/(m+1) | CR |
---|---|---|
1150 | -0.396 | 0.995 |
1175 | -0.401 | 0.998 |
1200 | -0.403 | 0.990 |
1225 | -0.397 | 0.991 |
1250 | -0.396 | 0.994 |
Average | -0.399 | — |
Heating rate/(K·min-1) | a | CR |
---|---|---|
5 | -14049 | 0.990 |
10 | -14165 | 0.987 |
20 | -14279 | 0.985 |
Average | -14164 | — |
Table 3 The values of slope (a) and linear regression coef?cient (CR) of relationship between ln[(ΔL/L0)/T] and 1/T at different heating rates
Heating rate/(K·min-1) | a | CR |
---|---|---|
5 | -14049 | 0.990 |
10 | -14165 | 0.987 |
20 | -14279 | 0.985 |
Average | -14164 | — |
[1] | 冯乃祥. 铝电解. 北京: 化学工业出版社, 2006: 113-114. |
[2] |
SOLLI P A, EGGEN T, SKYBAKMOEN E , et al. Current efficiency in the Hall-Heroult process for aluminum electrolysis: experimental and modeling studies. Journal of Applied Electrochemistry, 1997, 27(8):939-946.
DOI URL |
[3] |
STERTEN Å . Current efficiency in aluminum reduction cells. Journal of Applied Electrochemistry, 1988,18(3):473-483.
DOI URL |
[4] |
KOLÅS S, STØRE T . Bath temperature and AlF3 control of an aluminium electrolysis cell. Control Engineering Practice, 2009,17(9):1035-1043.
DOI URL |
[5] |
CONSTANTIN V . Influence of the operating parameters over the current efficiency and corrosion rate in the Hall-Heroult aluminum cell with tin oxide anode substrate material. Chinese Journal of Chemical Engineering, 2015,23(4):722-726.
DOI URL |
[6] |
TAYLOR M P, ZHANG W D, WILLS V , et al. A dynamic model for the energy balance of an electrolysis cell. Chemical Engineering Research and Design, 1996,74(8):913-933.
DOI URL |
[7] |
SAFA Y, FLUECK M, RAPPAZ J . Numerical simulation of thermal problems coupled with magneto hydrodynamic effects in aluminium cell. Applied Mathematical Modelling, 2009,33(3):1479-1492.
DOI URL |
[8] | 刘业翔, 李劼 . 现代铝电解. 北京: 冶金工业出版社, 2008: 172-174. |
[9] | POSMYK A . Co-deposited composite coatings with a ceramic matrix destined for sliding pairs. Surface & Coatings Technology, 2013,206(15):3342-3349. |
[10] |
OLSEN E, THONSTAD J . Nickel ferrite as inert anodes in aluminum electrolysis: Part I Material fabrication and preliminary testing. Journal of Applied Electrochemistry, 1999,29(3):293-299.
DOI URL |
[11] |
MA J, BAO L, YAO G C , et al. Effect of MnO2 addition on properties of NiFe2O4-based cermets. Ceramics International, 2011,37(8):3381-3387.
DOI URL |
[12] |
ZARRABIAN P, KALANTAR M, GHASEMI S S . Fabrication and characterization of nickel ferrite based inert anodes for aluminum electrolysis. Journal of Materials Engineering and Performance, 2014,23(5):1656-1664.
DOI URL |
[13] |
TIAN Z L, LAI Y Q, LI Z Y , et al. Further development on NiFe2O4-based cermet inert anodes for aluminum electrolysis. JOM, 2014,66(11):2229-2234.
DOI URL |
[14] |
ZHANG Z G, YAO G C, LUO H J , et al. Sintering behavior and properties of NiFe2O4 ceramic inert anode toughened by adding NiFe2O4 nanopowder. Journal of Inorganic Materials, 2016,31(7):761-768.
DOI URL |
[15] |
MOUZON J, GLOWACKI E, ODÉN M. Comparison between slip-casting and uniaxial pressing for the fabrication of translucent yttria ceramics. Journal of Materials Science, 2008,43(8):2849-2856.
DOI URL |
[16] |
COMBE E, GUILMEAU E, SAVARY E , et al. Microwave sintering of Ge-doped In2O3 thermoelectric ceramics prepared by slip casting process. Journal of the European Ceramic Society, 2015,35(1):145-151.
DOI URL |
[17] |
ORTIZ A L, CANDELARIO V M, MORENO R , et al. Near-net shape manufacture of B4C-Co and ZrC-Co composites by slip casting and pressureless sintering. Journal of the European Ceramic Society, 2017,37(15):4577-4584.
DOI URL |
[18] |
DENG J, YAO D X, XIA Y F , et al. Gradient porous silicon nitride by slip casting and vacuum foaming. Journal of Inorganic Materials, 2016,31(8):865-868.
DOI URL |
[19] |
HASSANIN H, JIANG K . Fabrication and characterization of stabilised zirconia micro parts via slip casting and soft moulding. Scripta Materialia, 2013,69(6):433-436.
DOI URL |
[20] |
ZHOU J, PAN Y B, ZHANG W X , et al. Fabrication of YAG transparent ceramics using slip casting with ethanol. Journal of Inorganic Materials, 2011,26(3):254-256.
DOI URL |
[21] |
SHAFEIEY A, ENAYATI M H, ALHAJI A . The effect of slip casting and spark plasma sintering (SPS) temperature on the transparency of MgAl2O4 spinel. Ceramics International, 2018,44(4):3536-3540.
DOI URL |
[22] | YANG Z G, YU J B, LI C J , et al. Preparation of textured porous Al2O3 ceramics by slip casting in a strong magnetic field and its mechanical properties. Crystal Research & Technology, 2015,50(8):645-653. |
[23] |
BROUCZEK D, KONEGGER T . Open-porous silicon nitride-based ceramics in tubular geometry obtained by slip-casting and gelcasting. Advanced Engineering Materials, 2017,19(10):1700434.
DOI URL |
[24] |
ZHANG Z G, LIU Y H, YAO G C , et al. Solid-state reaction synthesis of NiFe2O4 nanoparticles by optimizing the synthetic conditions. Physica E: Low-dimensional Systems and Nanostructures, 2012,45:122-129.
DOI URL |
[25] | 马佳 . 制备大尺寸耐火材料型铝电解惰性阳极的研究. 沈阳: 东北大学博士学位论文, 2011. |
[26] | ZHANG R, GAO L, CHENG G F , et al. Fabrication and properties of SiC porous ceramics by slip casting process. Journal of Inorganic Materials, 2002,17(4):725-730. |
[27] | 张志刚 . 纳米增韧NiFe2O4基铝电解惰性阳极的研究. 沈阳: 东北大学博士学位论文, 2013. |
[28] | 严彪, 吴菊清, 李祖德 , 等. 现代粉末冶金手册. 北京: 化学工业出版社, 2013: 110. |
[29] |
LIU X Y, LIU M Y, ZHANG L . Co-adsorption and sequential adsorption of the co-existence four heavy metal ions and three fluoroquinolones on the functionalized ferromagnetic 3D NiFe2O4 porous hollow microsphere. Journal of Colloid and Interface Science, 2018,511:135-144.
DOI URL |
[30] |
BHOSALE S V, BANKAR D N, BHORASKAR S V , et al. Analysis of electrokinetic properties of NiFe2O4 nanoparticles synthesized by DC thermal plasma route and its use in adsorption of humic substances. Journal of Environmental Chemical Engineering, 2016,4(2):1584-1593.
DOI URL |
[31] |
BANNISTER M J . Shape sensitivity of initial sintering equations. Journal of the American Ceramic Society, 1968,51(10):548-553.
DOI URL |
[32] |
KESKI J R, CUTLER I B . Initial sintering of MnXO-Al2O3. Journal of the American Ceramic Society, 1968,51(8):440-444.
DOI URL |
[33] |
WOOLFREY J L, BANNISTER M J . Nonisothermal techniques for studying initial-stage sintering. Journal of the American Ceramic Society, 1972,55(8):390-394.
DOI URL |
[34] |
ZHANG T S, PETER H, HUANG H T , et al. Early-stage sintering mechanisms of Fe-doped CeO2. Journal of Materials Science, 2002,37(5):997-1003.
DOI URL |
[35] |
HANSGN J D, RUSIN R P, TENG M H , et al. Combined-stage sintering model. Journal of the American Ceramic Society, 1992,75(5):1129-1135.
DOI URL |
[1] | QU Mujing, ZHANG Shulan, ZHU Mengmeng, DING Haojie, DUAN Jiaxin, DAI Henglong, ZHOU Guohong, LI Huili. CsPbBr3@MIL-53 Nanocomposite Phosphors: Synthesis, Properties and Applications in White LEDs [J]. Journal of Inorganic Materials, 2024, 39(9): 1035-1043. |
[2] | MIAO Xin, YAN Shiqiang, WEI Jindou, WU Chao, FAN Wenhao, CHEN Shaoping. Interface Layer of Te-based Thermoelectric Device: Abnormal Growth and Interface Stability [J]. Journal of Inorganic Materials, 2024, 39(8): 903-910. |
[3] | FAN Wugang, CAO Xiong, ZHOU Xiang, LI Ling, ZHAO Guannan, ZHANG Zhaoquan. Anticorrosion Performance of 8YSZ Ceramics in Simulated Aqueous Environment of Pressurized Water Reactor [J]. Journal of Inorganic Materials, 2024, 39(7): 803-809. |
[4] | WANG Kanglong, YIN Jie, CHEN Xiao, WANG Li, LIU Xuejian, HUANG Zhengren. Effect of Particle Grading on Properties of Silicon Carbide Ceramics Prepared by Selective Laser Sintering Printing Combined with Solid-phase Sintering at Atmospheric Pressure [J]. Journal of Inorganic Materials, 2024, 39(7): 754-760. |
[5] | LI Liuyuan, HUANG Kaiming, ZHAO Xiuyi, LIU Huichao, WANG Chao. Influence of RE-Si-Al-O Glass Phase on Microstructure and CMAS Corrosion Resistance of High Entropy Rare Earth Disilicates [J]. Journal of Inorganic Materials, 2024, 39(7): 793-802. |
[6] | LIU Yan, QIN Xianpeng, GAN Lin, ZHOU Guohong, ZHANG Tianjin, WANG Shiwei, CHEN Hetuo. Preparation of Sub-micron Spherical Y2O3 Particles and Transparent Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 691-696. |
[7] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[8] | LI Jie, LUO Zhixin, CUI Yang, ZHANG Guangheng, SUN Luchao, WANG Jingyang. CMAS Corrosion Resistance of Y3Al5O12/Al2O3 Ceramic Coating Deposited by Atmospheric Plasma Spraying [J]. Journal of Inorganic Materials, 2024, 39(6): 671-680. |
[9] | ZHENG Bin, KANG Kai, ZHANG Qing, YE Fang, XIE Jing, JIA Yan, SUN Guodong, CHENG Laifei. Preparation and Thermal Stability of Ti3SiC2 Ceramics by Polymer Derived Ceramics Method [J]. Journal of Inorganic Materials, 2024, 39(6): 733-740. |
[10] | ZHENG Yawen, ZHANG Cuiping, ZHANG Ruijie, XIA Qian, RU Hongqiang. Fabrication of Boron Carbide Ceramic Composites by Boronic Acid Carbothermal Reduction and Silicon Infiltration Reaction Sintering [J]. Journal of Inorganic Materials, 2024, 39(6): 707-714. |
[11] | CHEN Tian, LUO Yuan, ZHU Liu, GUO Xueyi, YANG Ying. Organic-inorganic Co-addition to Improve Mechanical Bending and Environmental Stability of Flexible Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(5): 477-484. |
[12] | LÜ Zhaoyang, XU Yong, YANG Jiuyan, TU Guangsheng, TU Bingtian, WANG Hao. Effect of MgF2 Additive on Preparation and Optical Properties of MgAl1.9Ga0.1O4 Transparent Ceramics [J]. Journal of Inorganic Materials, 2024, 39(5): 531-538. |
[13] | YANG Bo, LÜ Gongxuan, MA Jiantai. Electrocatalytic Water Splitting over Nickel Iron Hydroxide-cobalt Phosphide Composite Electrode [J]. Journal of Inorganic Materials, 2024, 39(4): 374-382. |
[14] | ZHANG Tingting, WANG Fangyuan, LIU Changyou, ZHANG Guorong, LÜ Jiahui, SONG Yuchen, JIE Wanqi. Hydrothermal-sintering Preparation of Cr2+:ZnSe/ZnSe Nanotwins with Core-shell Structure [J]. Journal of Inorganic Materials, 2024, 39(4): 409-415. |
[15] | LIU Song, ZHANG Faqiang, LUO Jin, LIU Zhifu. 0.9BaTiO3-0.1Bi(Mg1/2Ti1/2)O3 Ferroelectric Thin Films: Preparation and Energy Storage [J]. Journal of Inorganic Materials, 2024, 39(3): 291-298. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||