Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (6): 623-632.DOI: 10.15541/jim20190342
Special Issue: 2020年能源材料论文精选(三) :太阳能电池、热电材料及其他; 【虚拟专辑】太阳能电池(2020~2021)
YU Shouwu1,ZHAO Zewen1,2,ZHAO Jinjin2,XIAO Shujuan1,SHI Yan3,GAO Cunfa3,SU Xiao2,HU Yuxiang4,ZHAO Zhisheng5,WANG Jie2,WANG Lianzhou4()
Received:
2019-07-10
Revised:
2019-09-01
Published:
2020-06-20
Online:
2019-09-18
Supported by:
CLC Number:
YU Shouwu, ZHAO Zewen, ZHAO Jinjin, XIAO Shujuan, SHI Yan, GAO Cunfa, SU Xiao, HU Yuxiang, ZHAO Zhisheng, WANG Jie, WANG Lianzhou. Research Progress in Novel In-situ Integrative Photovoltaic-storage Tandem Cells[J]. Journal of Inorganic Materials, 2020, 35(6): 623-632.
Solar cell type | Device construction | ηoverall*/% | ηsolar*/% | ηstorage*/% | Ref. |
---|---|---|---|---|---|
PEDOT:PSS/n-Si/Ti/PE/(PVA/H3PO4)/PE/Ti | 10.50 | 13.39 | 78.42 | [29] | |
SiSC-SPC | Glass/c-Si/Insulation layer/Graphene oxides/ Electrolyte/Substrate | 9.72 | 15.69 | 62.00 | [30] |
PEDOT:PSS/Si/Au/Graphene/Separator/Graphene/PET | 2.92 | 12.37 | 23.61 | [19] | |
SiSC-LIB | c-Si/Al/SiO2/Al/Li4Ti5O12/Soild electrolyte/LiCoO2/ Al/Li4Ti5O12/Solid electrolyte/LiCoO2/Al | 7.61 | 15.80 | 48.16 | [31] |
Table 1 Performance parameters of in-situ integrative SiSC-storage tandem cells
Solar cell type | Device construction | ηoverall*/% | ηsolar*/% | ηstorage*/% | Ref. |
---|---|---|---|---|---|
PEDOT:PSS/n-Si/Ti/PE/(PVA/H3PO4)/PE/Ti | 10.50 | 13.39 | 78.42 | [29] | |
SiSC-SPC | Glass/c-Si/Insulation layer/Graphene oxides/ Electrolyte/Substrate | 9.72 | 15.69 | 62.00 | [30] |
PEDOT:PSS/Si/Au/Graphene/Separator/Graphene/PET | 2.92 | 12.37 | 23.61 | [19] | |
SiSC-LIB | c-Si/Al/SiO2/Al/Li4Ti5O12/Soild electrolyte/LiCoO2/ Al/Li4Ti5O12/Solid electrolyte/LiCoO2/Al | 7.61 | 15.80 | 48.16 | [31] |
Fig. 3 (a) Photograph[46] and (b-f) schematic diagrams[11,39,46] of in-situ integrated DSSC-storagetandem cells, and (g-h) schematic diagrams of in-situ integrated QDSSC-storage tandem cells[48]
Solar cell type | Device construction | ηoverall*/% | ηsolar*/% | ηstorage*/% | Ref. |
---|---|---|---|---|---|
DSSC-SPC | FTO/TiO2@dye/LiI/Carbon layer/Porous separator/C/Pt | - | - | 59.00 | [12] |
FTO/TiO2@N719/I-/I3-/Pt/Carbon/Separator/Electrolyte/C/Pt | - | - | 42.00 | [37] | |
TCO/TiO2@N719/I-/I3- gel/MWCNT /PVA-H3PO4/MWCNT | 5.12 | 6.10 | 84.00 | [39] | |
FTO/TiO2@N719/ I-/I3- /Zn NWs@PVDF @Au@Pt/FTO | 3.70 | - | - | [40] | |
Glass/FTO/TiO2@dye/ I-/I3-/Si/Ionic polymer/Si wafer | 2.10 | 2.63 | 80.00 | [41] | |
FTO/TiO2-D365dye/P3HT/Ag/RuOx(OH)y/Nafion membrane/ RuOx(OH)y/FTO | 0.80 | 0.91 | 88.00 | [42] | |
Ti/TiO2@N719/ I-/I3-/Pt/Parafilm/C/PVDF/ SS | 1.46 | 2.03 | 71.56 | [43] | |
CNT fiber@CNTs/ Ti wire/TiO2@N719/I-/I3-/CNT fiber | 1.50 | 6.10 | 84.00 | [44] | |
Ti wire/TiO2@N719/Eutectic melts/CNTs-Ti wire/ TiO2 /PVA-H3PO4/CNT | 2.07 | 2.73 | 75.70 | [45] | |
Ti/TiO2@N719/I-/I3-/MWCNT/Separator/MWCNT/PVA-H3PO4/MWCNT | 1.83 | 6.47 | 28.30 | [11] | |
Ti Fiber@TiO2@dye/ I-/I3-/Stainless steel(ss)@PANi-SS@Space wire/H2SO4/ss@PANi | 2.12 | 4.56 | 46.00 | [18] | |
Ti/TiO2@N719/I-/I3-/Carbon fiber(CF)/EVA/Cu-CF@RuO2?xH2O/H3PO4/PVA/CF@RuO2?xH2O/EVA/Cu/PDMS | - | 5.64 | - | [46] | |
QDSSC-SPC | Glass/FTO/TiO2@CdS/CdSe/S2-/S/Cfiber@Cu2S/C/Electrolyte/C | 1.8 | [48] | ||
DSSC-LIB | Pt/Electrolyte/TNTs@N719/Ti/TNTs/Membrane/LiCoO2/Al | 0.82 | - | - | [49] |
PEN/ITO/TiO2@N719/I-/I3-/Pt/PEDOT/LiClO4/PEDOT/Pt | - | 4.37 | - | [50] | |
FTO/TiO2@N3/I-/I3-/Pt/PProDOT-Et2/LiClO4/PProDOT-Et2/Pt | 0.60 | 0.75 | 80.00 | [51] | |
FTO/Pt/ I-/I3-/TiO2 nanotube (ATO)@N749/Ti/ ATO/Separator/Li2SO4/ATO/Ti/FTO | 1.64 | 3.18 | 51.60 | [52] | |
FTO/TiO2@bis-EDOT dye/PEDOT/C/LiClO4/electrolyte/ppy/FTO | 0.10 | - | - | [53] |
Table 2 Performance comparison of in-situ integrative SSC-storage tandem cells
Solar cell type | Device construction | ηoverall*/% | ηsolar*/% | ηstorage*/% | Ref. |
---|---|---|---|---|---|
DSSC-SPC | FTO/TiO2@dye/LiI/Carbon layer/Porous separator/C/Pt | - | - | 59.00 | [12] |
FTO/TiO2@N719/I-/I3-/Pt/Carbon/Separator/Electrolyte/C/Pt | - | - | 42.00 | [37] | |
TCO/TiO2@N719/I-/I3- gel/MWCNT /PVA-H3PO4/MWCNT | 5.12 | 6.10 | 84.00 | [39] | |
FTO/TiO2@N719/ I-/I3- /Zn NWs@PVDF @Au@Pt/FTO | 3.70 | - | - | [40] | |
Glass/FTO/TiO2@dye/ I-/I3-/Si/Ionic polymer/Si wafer | 2.10 | 2.63 | 80.00 | [41] | |
FTO/TiO2-D365dye/P3HT/Ag/RuOx(OH)y/Nafion membrane/ RuOx(OH)y/FTO | 0.80 | 0.91 | 88.00 | [42] | |
Ti/TiO2@N719/ I-/I3-/Pt/Parafilm/C/PVDF/ SS | 1.46 | 2.03 | 71.56 | [43] | |
CNT fiber@CNTs/ Ti wire/TiO2@N719/I-/I3-/CNT fiber | 1.50 | 6.10 | 84.00 | [44] | |
Ti wire/TiO2@N719/Eutectic melts/CNTs-Ti wire/ TiO2 /PVA-H3PO4/CNT | 2.07 | 2.73 | 75.70 | [45] | |
Ti/TiO2@N719/I-/I3-/MWCNT/Separator/MWCNT/PVA-H3PO4/MWCNT | 1.83 | 6.47 | 28.30 | [11] | |
Ti Fiber@TiO2@dye/ I-/I3-/Stainless steel(ss)@PANi-SS@Space wire/H2SO4/ss@PANi | 2.12 | 4.56 | 46.00 | [18] | |
Ti/TiO2@N719/I-/I3-/Carbon fiber(CF)/EVA/Cu-CF@RuO2?xH2O/H3PO4/PVA/CF@RuO2?xH2O/EVA/Cu/PDMS | - | 5.64 | - | [46] | |
QDSSC-SPC | Glass/FTO/TiO2@CdS/CdSe/S2-/S/Cfiber@Cu2S/C/Electrolyte/C | 1.8 | [48] | ||
DSSC-LIB | Pt/Electrolyte/TNTs@N719/Ti/TNTs/Membrane/LiCoO2/Al | 0.82 | - | - | [49] |
PEN/ITO/TiO2@N719/I-/I3-/Pt/PEDOT/LiClO4/PEDOT/Pt | - | 4.37 | - | [50] | |
FTO/TiO2@N3/I-/I3-/Pt/PProDOT-Et2/LiClO4/PProDOT-Et2/Pt | 0.60 | 0.75 | 80.00 | [51] | |
FTO/Pt/ I-/I3-/TiO2 nanotube (ATO)@N749/Ti/ ATO/Separator/Li2SO4/ATO/Ti/FTO | 1.64 | 3.18 | 51.60 | [52] | |
FTO/TiO2@bis-EDOT dye/PEDOT/C/LiClO4/electrolyte/ppy/FTO | 0.10 | - | - | [53] |
Device construction | ηoverall*/% | ηsolar*/% | ηstorage*/% | Ref. |
---|---|---|---|---|
FTO/c-TiO2/m-TiO2/CH3NH3PbI3/Carbon/Gel electrolyte/Carbon | 7.10 | 9.60 | 73.96 | [72] |
FTO/TiO2/Perovskite/Carbon/MnO2/Membrane SSE/Carbon | 5.26 | 7.79 | 67.50 | [13] |
ITO/pss/PTAA/Perovskite/PCBM/PEI/Ag/GRO/PVA/Separator/PVA/GRO | 10.97 | 13.66 | 80.31 | [73] |
FTO/TiO2/CH3NH3PbI3/MWCNT/PMMA/PVA/PANI@acSACNT/PMMA/SACNT | 1.92 | 2.71 | 70.90 | [74] |
PET/ITO/PEDOT:PSS/CH3NH3PbI3/PCBM/CuOHNT/AgNW/AuPd/MnO2/KOH/PVA/MnO2/AuPd/AgNW/CuOHNT | 6.97 | 10.41 | 67.00 | [75] |
Table 3 Performance comparison of in-situ integrative PSC-storage tandem cells
Device construction | ηoverall*/% | ηsolar*/% | ηstorage*/% | Ref. |
---|---|---|---|---|
FTO/c-TiO2/m-TiO2/CH3NH3PbI3/Carbon/Gel electrolyte/Carbon | 7.10 | 9.60 | 73.96 | [72] |
FTO/TiO2/Perovskite/Carbon/MnO2/Membrane SSE/Carbon | 5.26 | 7.79 | 67.50 | [13] |
ITO/pss/PTAA/Perovskite/PCBM/PEI/Ag/GRO/PVA/Separator/PVA/GRO | 10.97 | 13.66 | 80.31 | [73] |
FTO/TiO2/CH3NH3PbI3/MWCNT/PMMA/PVA/PANI@acSACNT/PMMA/SACNT | 1.92 | 2.71 | 70.90 | [74] |
PET/ITO/PEDOT:PSS/CH3NH3PbI3/PCBM/CuOHNT/AgNW/AuPd/MnO2/KOH/PVA/MnO2/AuPd/AgNW/CuOHNT | 6.97 | 10.41 | 67.00 | [75] |
[1] | CELIK I, PHILLIPS A B, SONG Z N , et al. Environmental analysis of perovskites and other relevant solar cell technologies in a tandem configuration. Energy & Environmental Science, 2017,10(9):1874-1884. |
[2] |
SHUKLA R, SUMATHY K, ERICKSON P , et al. Recent advances in the solar water heating systems: a review. Renewable and Sustainable Energy Reviews, 2013,19:173-190.
DOI URL |
[3] | HEDLEY G J, RUSECKAS A, SAMUEL I D W. Light harvesting for organic photovoltaics. Chemical Reviews, 2016,117(2):796-837. |
[4] |
IONESCU C, BARACU T, VLAD G E , et al. The historical evolution of the energy efficient buildings. Renewable and Sustainable Energy Reviews, 2015,49:243-253.
DOI URL |
[5] |
SHARMA S, JAIN K K, SHARMA A . Solar cells: in research and applications—a review. Materials Sciences and Applications, 2015,6(12):1145.
DOI URL |
[6] |
RAN J R, ZHANG J, YU J G , et al. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chemical Society Reviews, 2014,43(22):7787-7812.
DOI URL |
[7] |
YUAN Y L, LU Y D, JIA B E , et al. Integrated system of solar cells with hierarchical NiCo2O4 battery-supercapacitor hybrid devices for self-driving light-emitting diodes. Nano-Micro Letters, 2019,11(1):42.
DOI URL |
[8] | YUAN Y L, WU Y H, ZHANG T , et al. Integration of solar cells with hierarchical CoSx nanonets hybrid supercapacitors for self-powered photodetection systems. Journal of Power Sources, 2018,404:118-125. |
[9] | SELVAM S, BALAMURALITHARAN B, KARTHICK S N , et al. Novel high-temperature supercapacitor combined dye sensitized solar cell from a sulfated β-cyclodextrin/PVP/MnCO3 composite. Journal of Materials Chemistry A, 2015,3(19):10225-10232. |
[10] | HASSANALIERAGH M, SOYATA T, NADEAU A , et al. UR-SolarCap: an open source intelligent auto-wakeup solar energy harvesting system for supercapacitor-based energy buffering. IEEE Access, 2016,4:542-557. |
[11] | YANG Z B, DENG J, SUN H , et al. Self-powered energy fiber: energy conversion in the sheath and storage in the core. Advanced Materials, 2014,26(41):7038-7042. |
[12] | MIYASAKA T, MURAKAMI T N . The photocapacitor: an efficient self-charging capacitor for direct storage of solar energy. Applied Physics Letters, 2004,85(17):3932-3934. |
[13] |
LIU Z Y, ZHONG Y, SUN B , et al. Novel integration of perovskite solar cell and supercapacitor based on carbon electrode for hybridizing energy conversion and storage. ACS Applied Materials & Interfaces, 2017,9(27):22361-22368.
DOI URL |
[14] | GURUNG A, QIAO Q Q . Solar charging batteries: advances, challenges, and opportunities. Joule, 2018,2(7):1217-1230. |
[15] |
SCHMIDT D, HAGER M D, SCHUBERT U S . Photo-rechargeable electric energy storage systems. Advanced Energy Materials, 2016,6(1):1500369.
DOI URL |
[16] |
LECHENE B P, CLERC R, ARIAS A C . Theoretical analysis and characterization of the energy conversion and storage efficiency of photo-supercapacitors. Solar Energy Materials and Solar Cells, 2017,172:202-212.
DOI URL |
[17] | LIU R Y, LIU Y Q, ZOU H Y , et al. Integrated solar capacitors for energy conversion and storage. Nano Research, 2017,10(5):1545-1559. |
[18] | FU Y P, WU H W, YE S Y , et al. Integrated power fiber for energy conversion and storage. Energy & Environmental Science, 2013,6(3):805-812. |
[19] | LIU H H, LI M P, KANER R B , et al. Monolithically integrated self-charging power pack consisting of a silicon nanowire array/ conductive polymer hybrid solar cell and a laser-scribed graphene supercapacitor. ACS Applied Materials & Interfaces, 2018,10(18):15609-15615. |
[20] | CHAPIN D M, FULLER C S, PEARSON G L . A new silicon p-n junction photocell for converting solar radiation into electrical power. Journal of Applied Physics, 1954,25(5):676-677. |
[21] | ALI H, KOUL S, GREGORY G , et al. In situ transmission electron microscopy study of molybdenum oxide contacts for silicon solar cells. Physica Status Solidi (a), 2019,216(7):1800998. |
[22] | CHAN C E, WENHAM S R, HALLAM B J , et al. Monolithically integrated solar cell system. U.S., 10/211, 354. 2019-2-19. |
[23] |
NOGAY G, SAHLI F, WERNER J , et al. 25.1%-efficient monolithic perovskite/silicon tandem solar cell based on a p-type monocrystalline textured silicon wafer and high-temperature passivating contacts. ACS Energy Letters, 2019,4(4):844-845.
DOI URL |
[24] |
ZHAO X W, WU H S, YANG L S , et al. High efficiency CNT-Si heterojunction solar cells by dry gas doping. Carbon, 2019,147:164-171.
DOI URL |
[25] |
WU X W, LI J Y, TAN Y . Technology of preparing diamond wire cut multicrystalline silicon wafer texture surface. Journal of Inorganic Materials, 2017,32(9):985-990.
DOI URL |
[26] |
LIU X J, JIA L J, FAN G P , et al. Au nanoparticle enhanced thin-film silicon solar cells. Solar Energy Materials and Solar Cells, 2016,147:225-234.
DOI URL |
[27] |
REN X D, ZI W, MA Q , et al. Topology and texture controlled ZnO thin film electrodeposition for superior solar cell efficiency. Solar Energy Materials and Solar Cells, 2015,134:54-59.
DOI URL |
[28] | LIU X J, ZI W, LIU S Z. p-Layer bandgap engineering for high efficiency thin film silicon solar cells. Materials Science in Semiconductor Processing, 2015,39:192-199. |
[29] | LIU R Y, WANG J, SUN T , et al. Silicon nanowire/polymer hybrid solar cell-supercapacitor: a self-charging power unit with a total efficiency of 10.5%. Nano Letters, 2017,17(7):4240-4247. |
[30] | THEKKEKARA L V, JIA B H, ZHANG Y , et al. On-chip energy storage integrated with solar cells using a laser scribed graphene oxide film. Applied Physics Letters, 2015,107(3):031105. |
[31] | UM H D, CHOI K H, HWANG I , et al. Monolithically integrated, photo-rechargeable portable power sources based on miniaturized Si solar cells and printed solid-state lithium-ion batteries. Energy & Environmental Science, 2017,10(4):931-940. |
[32] | O'REGAN B, GRÄTZEL M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991,353(6346):737. |
[33] |
YUN S, FREITAS J N, NOGUEIRA A F , et al. Dye-sensitized solar cells employing polymers. Progress in Polymer Science, 2016,59:1-40.
DOI URL |
[34] | SU’AIT M S, RAHMAN M Y A, AHMAD A . Review on polymer electrolyte in dye-sensitized solar cells (DSSCs). Solar Energy, 2015,115:452-470. |
[35] | MAHMOOD A . Recent research progress on quasi-solid-state electrolytes for dye-sensitized solar cells. Journal of Energy Chemistry, 2015,24(6):686-692. |
[36] | MENG X D, YIN M, SHU T , et al. Research progress on counter electrodes of quantum dot-sensitized solar cells. Journal of Inorganic Materials, 2018,33(5):483-493. |
[37] | MURAKAMI T N, KAWASHIMA N, MIYASAKA T . A high- voltage dye-sensitized photocapacitor of a three-electrode system. Chemical Communications, 2005(26):3346-3348. |
[38] | SAITO Y, OGAWA A, UCHIDA S , et al. Energy-storable dye-sensitized solar cells with interdigitated nafion/polypyrrole-Pt comb-like electrodes. Chemistry Letters, 2010,39(5):488-489. |
[39] |
YANG Z B, LI L, LUO Y F , et al. An integrated device for both photoelectric conversion and energy storage based on free-standing and aligned carbon nanotube film. Journal of Materials Chemistry A, 2013,1(3):954-958.
DOI URL |
[40] | ZHANG X, HUANG X Z, LI C S , et al. Dye-sensitized solar cell with energy storage function through PVDF/ZnO nanocomposite counter electrode. Advanced Materials, 2013,25(30):4093-4096. |
[41] |
COHN A P, ERWIN W R, SHARE K , et al. All silicon electrode photocapacitor for integrated energy storage and conversion. Nano Letters, 2015,15(4):2727-2731.
DOI URL |
[42] | SKUNIK-NUCKOWSKA M, GRZEJSZCZYK K, KULESZ P J , et al. Integration of solid-state dye-sensitized solar cell with metal oxide charge storage material into photoelectrochemical capacitor. Journal of Power Sources, 2013,234:91-99. |
[43] | SCALIA A, BELLA F, LAMBERTI A , et al. A flexible and portable powerpack by solid-state supercapacitor and dye-sensitized solar cell integration. Journal of Power Sources, 2017,359:311-321. |
[44] |
CHEN T, QIU L B, YANG Z L , et al. An integrated “energy wire” for both photoelectric conversion and energy storage. Angewandte Chemie International Edition, 2012,51(48):11977-11980.
DOI URL |
[45] |
CHEN X L, SUN H, YANG Z B , et al. A novel “energy fiber” by coaxially integrating dye-sensitized solar cell and electrochemical capacitor. Journal of Materials Chemistry A, 2014,2(6):1897-1902.
DOI URL |
[46] |
WEN Z, YEH M H, GUO H Y , et al. Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Science Advances, 2016,2(10):e1600097.
DOI URL |
[47] | Best Research-Cell Efficiency Chart(NREL). https://www.nrel. gov/pv/cell-efficiency.html. |
[48] | SHI C L, DONG H, ZHU R , et al. An “all-in-one” mesh-typed integrated energy unit for both photoelectric conversion and energy storage in uniform electrochemical system. Nano Energy, 2015,13:670-678. |
[49] | GUO W X, XUE X Y, WANG S H , et al. An integrated power pack of dye-sensitized solar cell and Li battery based on double-sided TiO2 nanotube arrays. Nano Letters, 2012,12(5):2520-2523. |
[50] |
CHEN H W, HSU C Y, CHEN J G , et al. Plastic dye-sensitized photo-supercapacitor using electrophoretic deposition and compression methods. Journal of Power Sources, 2010,195(18):6225-6231.
DOI URL |
[51] |
HSU C Y, CHEN H W, LEE K M , et al. A dye-sensitized photo-supercapacitor based on PProDOT-Et2 thick films. Journal of Power Sources, 2010,195(18):6232-6238.
DOI URL |
[52] |
XU J, WU H, LU L F , et al. Integrated photo-supercapacitor based on bi-polar TiO2 nanotube arrays with selective one-side plasma‐assisted hydrogenation. Advanced Functional Materials, 2014,24(13):1840-1846.
DOI URL |
[53] |
LIU P, CAO Y L, LI G R , et al. A solar rechargeable flow battery based on photoregeneration of two soluble redox couples. ChemSusChem, 2013,6(5):802-806.
DOI URL |
[54] |
YAN N F, LI G R, GAO X P . Electroactive organic compounds as anode-active materials for solar rechargeable redox flow battery in dual-phase electrolytes. Journal of The Electrochemical Society, 2014,161(5):A736-A741.
DOI URL |
[55] |
KAGAN C R, MITZI D B, DIMITRAKOPOULOS C D . Organic- inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science, 1999,286(5441):945-947.
DOI URL |
[56] |
MITZI D B, FEILD C A, HARRISON W T A, et al. Conducting tin halides with a layered organic-based perovskite structure. Nature, 1994,369(6480):467.
DOI URL |
[57] |
KOJIAMA A, TESHIMA K, SHIRAI Y , et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009,131(17):6050-6051.
DOI URL |
[58] |
CHU Z Y, LI G L, JIANG Z H , et al. Recent progress in high-quality perovskite CH3NH3PbI3 single crystal. Journal of Inorganic Materials, 2018,33(10):1035-1045.
DOI URL |
[59] |
JIANG Q, CHU Z M, WANG P Y , et al. Planar-structure perovskite solar cells with efficiency beyond 21%. Advanced Materials, 2017,29(46):1703852.
DOI URL |
[60] |
JIANG Q, ZHANG L Q, WANG H L , et al. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nature Energy, 2017,2(1):16177.
DOI URL |
[61] |
XIONG L B, GUO Y X, WEN J , et al. Review on the application of SnO2 in perovskite solar cells. Advanced Functional Materials, 2018,28(35):1802757.
DOI URL |
[62] |
DJURIŠIĆ A B, LIU F Z, TAM H W , et al. Perovskite solar cells-an overview of critical issues. Progress in Quantum Electronics, 2017,53:1-37.
DOI URL |
[63] |
HUANG J, XIANG S H, YU J S , et al. Highly efficient prismatic perovskite solar cells. Energy & Environmental Science, 2019,12(3):929-937.
DOI URL |
[64] |
JUNG E H, JEON N J, PARK E Y , et al. Efficient, stable and scalable perovskite solar cells using poly (3-hexylthiophene). Nature, 2019,567(7749):511.
DOI URL |
[65] |
MUNDHAAS N, YU Z J, BUSH K A , et al. Series resistance measurements of perovskite solar cells using Jsc-Voc measurements. Solar RRL, 2019,3(4):1800378.
DOI URL |
[66] |
SCHMAGER R, GOMARD G, RICHARDS B S , et al. Nanophotonic perovskite layers for enhanced current generation and mitigation of lead in perovskite solar cells. Solar Energy Materials and Solar Cells, 2019,192:65-71.
DOI URL |
[67] | SHIN S S, SUK J H, KANG B J , et al. Energy-level engineering of the electron transporting layer for improving open-circuit voltage in dye and perovskite-based solar cells. Energy & Environmental Science, 2019,12(3):958-964. |
[68] |
XIAO Y Q, WANG C L, KONDAMAREDDY K K , et al. Enhancing the performance of hole-conductor free carbon-based perovskite solar cells through rutile-phase passivation of anatase TiO2 scaffold. Journal of Power Sources, 2019,422:138-144.
DOI URL |
[69] |
YANG D B, SANO T S, YAGUCHI Y , et al. Achieving 20% efficiency for low‐temperature‐processed inverted perovskite solar cells. Advanced Functional Materials, 2019,29(12):1807556.
DOI URL |
[70] |
WANG F Y, ZHANG Y H, YANG M F , et al. Exploring low-temperature processed a-WOx/SnO2 hybrid electron transporting layer for perovskite solar cells with efficiency >20.5%. Nano Energy, 2019,63:103825
DOI URL |
[71] |
XU X B, LI S H, ZHANG H , et al. A power pack based on organometallic perovskite solar cell and supercapacitor. ACS Nano, 2015,9(2):1782-1787.
DOI URL |
[72] |
LIANG J, ZHU G Y, LU Z P , et al. Integrated perovskite solar capacitors with high energy conversion efficiency and fast photo- charging rate. Journal of Materials Chemistry A, 2017,6(5):2047-2052.
DOI URL |
[73] |
KIM J, LEE S M, HWANG Y H , et al. A highly efficient self-power pack system integrating supercapacitors and photovoltaics with an area-saving monolithic architecture. Journal of Materials Chemistry A, 2017,5(5):1906-1912.
DOI URL |
[74] |
LIU R H, LIU C H, FAN S S . A photocapacitor based on organometal halide perovskite and PANI/CNT composites integrated using a CNT bridge. Journal of Materials Chemistry A, 2017,5(44):23078-23084.
DOI URL |
[75] |
LI C, ISLAM M M, MOORE J L , et al. Wearable energy-smart ribbons for synchronous energy harvest and storage. Nature Communications, 2016,7:13319.
DOI URL |
[76] |
JIA C M, ZHAO X Y, LAI Y H , et al. Highly flexible, robust, stable and high efficiency perovskite solar cells enabled by van der Waals epitaxy on mica substrate. Nano Energy, 2019,60:476-484.
DOI URL |
[77] |
HU Y X, BAI Y, LUO B , et al. A portable and efficient solar-rechargeable battery with ultrafast photo-charge/discharge rate. Advanced Energy Materials, 2019,9(28):1900872.
DOI URL |
[1] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[2] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[3] | CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review [J]. Journal of Inorganic Materials, 2023, 38(6): 634-646. |
[4] | LIN Junliang, WANG Zhanjie. Research Progress on Ferroelectric Superlattices [J]. Journal of Inorganic Materials, 2023, 38(6): 606-618. |
[5] | NIU Jiaxue, SUN Si, LIU Pengfei, ZHANG Xiaodong, MU Xiaoyu. Copper-based Nanozymes: Properties and Applications in Biomedicine [J]. Journal of Inorganic Materials, 2023, 38(5): 489-502. |
[6] | YUAN Jingkun, XIONG Shufeng, CHEN Zhangwei. Research Trends and Challenges of Additive Manufacturing of Polymer-derived Ceramics [J]. Journal of Inorganic Materials, 2023, 38(5): 477-488. |
[7] | DU Jianyu, GE Chen. Recent Progress in Optoelectronic Artificial Synapse Devices [J]. Journal of Inorganic Materials, 2023, 38(4): 378-386. |
[8] | YANG Yang, CUI Hangyuan, ZHU Ying, WAN Changjin, WAN Qing. Research Progress of Flexible Neuromorphic Transistors [J]. Journal of Inorganic Materials, 2023, 38(4): 367-377. |
[9] | YOU Junqi, LI Ce, YANG Dongliang, SUN Linfeng. Double Dielectric Layer Metal-oxide Memristor: Design and Applications [J]. Journal of Inorganic Materials, 2023, 38(4): 387-398. |
[10] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. |
[11] | CHEN Kunfeng, HU Qianyu, LIU Feng, XUE Dongfeng. Multi-scale Crystallization Materials: Advances in in-situ Characterization Techniques and Computational Simulations [J]. Journal of Inorganic Materials, 2023, 38(3): 256-269. |
[12] | ZHANG Chaoyi, TANG Huili, LI Xianke, WANG Qingguo, LUO Ping, WU Feng, ZHANG Chenbo, XUE Yanyan, XU Jun, HAN Jianfeng, LU Zhanwen. Research Progress of ScAlMgO4 Crystal: a Novel GaN and ZnO Substrate [J]. Journal of Inorganic Materials, 2023, 38(3): 228-242. |
[13] | QI Zhanguo, LIU Lei, WANG Shouzhi, WANG Guogong, YU Jiaoxian, WANG Zhongxin, DUAN Xiulan, XU Xiangang, ZHANG Lei. Progress in GaN Single Crystals: HVPE Growth and Doping [J]. Journal of Inorganic Materials, 2023, 38(3): 243-255. |
[14] | XIE Bing, CAI Jinxia, WANG Tongtong, LIU Zhiyong, JIANG Shenglin, ZHANG Haibo. Research Progress of Polymer-based Multilayer Composite Dielectrics with High Energy Storage Density [J]. Journal of Inorganic Materials, 2023, 38(2): 137-147. |
[15] | LIU Yan, ZHANG Keying, LI Tianyu, ZHOU Bo, LIU Xuejian, HUANG Zhengren. Electric-field Assisted Joining Technology for the Ceramics Materials: Current Status and Development Trend [J]. Journal of Inorganic Materials, 2023, 38(2): 113-124. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||