Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (1): 53-60.DOI: 10.15541/jim20190160
Special Issue: MAX相和MXene材料; 计算材料论文精选(2020)
Previous Articles Next Articles
QI Xin-Xin1,SONG Guang-Ping1,YIN Wei-Long1,WANG Ming-Fu2,HE Xiao-Dong1,ZHENG Yong-Ting1,WANG Rong-Guo1,BAI Yue-Lei1()
Received:
2019-04-17
Revised:
2019-05-14
Published:
2020-01-20
Online:
2019-07-23
About author:
QI Xin-Xin(1995-), PhD Candidate. E-mail:16S118138@stu.hit.edu.cn
Supported by:
CLC Number:
QI Xin-Xin, SONG Guang-Ping, YIN Wei-Long, WANG Ming-Fu, HE Xiao-Dong, ZHENG Yong-Ting, WANG Rong-Guo, BAI Yue-Lei. Analysis on Phase Stability and Mechanical Property of Newly-discovered Ternary Layered Boride Cr4AlB4[J]. Journal of Inorganic Materials, 2020, 35(1): 53-60.
Lattice parameters | Internal coordinates | Density /(g·cm-3) | DOS at Ef /(States·eV-1· Unit cell-1) | Bulk modulus /GPa | Pressure derivative | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a/nm | b/nm | c/nm | V/nm3 | yCr1 | yCr2 | yAl | yB1 | yB2 | |||||||
Cr4AlB4 | LDA | 0.28766 | 1.8578 | 0.28867 | 0.15427 | - | - | - | - | - | - | - | - | - | |
GGA | PBE | 0.29312 | 1.8923 | 0.29512 | 0.16370 | - | - | - | - | - | - | - | - | ||
RPBE | 0.29334 | 1.8963 | 0.29551 | 0.16439 | 0.2926 | 0.5875 | 0.5 | 0.3803 | 0.6720 | 5.64 | 7.031 | 234.16 | 4.55 | ||
PW91 | 0.29197 | 1.8863 | 0.29435 | 0.16212 | - | - | - | - | - | - | - | - | - | ||
Exp[ | 0.29343 | 1.8891 | 0.29733 | 0.16481 | 0.2936 | 0.5859 | 0.5 | 0.3839 | 0.6646 | - | - | - | - | ||
CrB | Cal[ | 0.2924 | 0.7836 | 0.2911 | 0.06670 | - | - | - | - | - | 6.25 | - | - | - |
Table 1 Lattice parameters and some basic property of Cr4AlB4 and CrB
Lattice parameters | Internal coordinates | Density /(g·cm-3) | DOS at Ef /(States·eV-1· Unit cell-1) | Bulk modulus /GPa | Pressure derivative | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a/nm | b/nm | c/nm | V/nm3 | yCr1 | yCr2 | yAl | yB1 | yB2 | |||||||
Cr4AlB4 | LDA | 0.28766 | 1.8578 | 0.28867 | 0.15427 | - | - | - | - | - | - | - | - | - | |
GGA | PBE | 0.29312 | 1.8923 | 0.29512 | 0.16370 | - | - | - | - | - | - | - | - | ||
RPBE | 0.29334 | 1.8963 | 0.29551 | 0.16439 | 0.2926 | 0.5875 | 0.5 | 0.3803 | 0.6720 | 5.64 | 7.031 | 234.16 | 4.55 | ||
PW91 | 0.29197 | 1.8863 | 0.29435 | 0.16212 | - | - | - | - | - | - | - | - | - | ||
Exp[ | 0.29343 | 1.8891 | 0.29733 | 0.16481 | 0.2936 | 0.5859 | 0.5 | 0.3839 | 0.6646 | - | - | - | - | ||
CrB | Cal[ | 0.2924 | 0.7836 | 0.2911 | 0.06670 | - | - | - | - | - | 6.25 | - | - | - |
Cr4AlB4 | Cr2AlB2 | CrB | |||||
---|---|---|---|---|---|---|---|
d/nm | k/GPa | d/nm[ | k/GPa[ | d/nm | d/nm[ | k/GPa | |
Cr1-Al | 0.2662 | 625 | 0.26443 | 617 | - | - | - |
Cr1-B1 | 0.2169 | 885 | 0.22014 | 813 | 0.21712 | 0.2158 | 917 |
Cr1-B2 | 0.2180 | 1190 | 0.21876 | 1149 | 0.2212 | 0.2200 | 1123 |
Cr2-B1 | 0.2224 | 1074 | - | - | - | - | - |
Cr2-B2 | 0.2187 | 840 | - | - | - | - | - |
Cr2-B3 | 0.2288 | 826 | - | - | - | - | - |
B1-B2 | 0.1771 | 1123 | 0.17616 | 1099 | 0.17841 | 0.1722 | 1149 |
Al-B1 | 0.2269 | 574 | 0.22765 | 571 | - | - | - |
Table 2 Bond length and bond stiffness in Cr4AlB4, and Cr2AlB2 as well as binary borides CrB
Cr4AlB4 | Cr2AlB2 | CrB | |||||
---|---|---|---|---|---|---|---|
d/nm | k/GPa | d/nm[ | k/GPa[ | d/nm | d/nm[ | k/GPa | |
Cr1-Al | 0.2662 | 625 | 0.26443 | 617 | - | - | - |
Cr1-B1 | 0.2169 | 885 | 0.22014 | 813 | 0.21712 | 0.2158 | 917 |
Cr1-B2 | 0.2180 | 1190 | 0.21876 | 1149 | 0.2212 | 0.2200 | 1123 |
Cr2-B1 | 0.2224 | 1074 | - | - | - | - | - |
Cr2-B2 | 0.2187 | 840 | - | - | - | - | - |
Cr2-B3 | 0.2288 | 826 | - | - | - | - | - |
B1-B2 | 0.1771 | 1123 | 0.17616 | 1099 | 0.17841 | 0.1722 | 1149 |
Al-B1 | 0.2269 | 574 | 0.22765 | 571 | - | - | - |
Included phases | Compound | Most competing phases | ΔHcomp/(eV·atom-1) |
---|---|---|---|
CrB, CrB2, CrB4, Cr2B, Cr5B3, Cr3B4, Cr2B3, Cr2Al, Cr5Al8, Cr7Al45, AlB2, AlB12, Cr2AlB2, Cr3AlB4, Cr4AlB6 | Cr4AlB4 | 2CrB+Cr2AlB2 | -0.2207 |
Cr2AlB2[ | 2CrB+Al | -0.0461 |
Table 3 Formation enthalpy ΔHcomp for Cr4AlB4, phases with ΔHcomp < 0 are in bold
Included phases | Compound | Most competing phases | ΔHcomp/(eV·atom-1) |
---|---|---|---|
CrB, CrB2, CrB4, Cr2B, Cr5B3, Cr3B4, Cr2B3, Cr2Al, Cr5Al8, Cr7Al45, AlB2, AlB12, Cr2AlB2, Cr3AlB4, Cr4AlB6 | Cr4AlB4 | 2CrB+Cr2AlB2 | -0.2207 |
Cr2AlB2[ | 2CrB+Al | -0.0461 |
Fig. 3 Pressure dependence of the normalized cell volume V/V0 as well as the normalized lattice parameters a/a0, b/b0 and c/c0 of Cr4AlB4 (a) and the normalized bond length d/d0 in Cr4AlB4 (b)
Boder charge/e | Cr1 | Cr2 | Al | B1 | B2 |
---|---|---|---|---|---|
CrB | -0.79 | - | - | 0.78 | - |
Cr2AlB2[ | -0.37 | - | -1.50 | 1.12 | - |
Cr4AlB4 | -0.39 | -0.76 | -1.48 | 1.15 | 0.74 |
Table 4 Bader charge analysis of Cr4AlB4, Cr2AlB2 and CrB
Boder charge/e | Cr1 | Cr2 | Al | B1 | B2 |
---|---|---|---|---|---|
CrB | -0.79 | - | - | 0.78 | - |
Cr2AlB2[ | -0.37 | - | -1.50 | 1.12 | - |
Cr4AlB4 | -0.39 | -0.76 | -1.48 | 1.15 | 0.74 |
Compound | c11 | c12 | c13 | c22 | c23 | c33 | c44 | c55 | c66 | G | B | G/B | E | μ | θD/K |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cr4AlB4 | 594 | 112 | 126 | 472 | 120 | 467 | 185 | 176 | 231 | 194 | 245 | 0.79 | 460 | 0.19 | 923 |
Cr2AlB2[ | 505 | 101 | 111 | 410 | 109 | 437 | 158 | 162 | 209 | 174 | 221 | 0.79 | 414 | 0.19 | 892 |
MoAlB[ | 327 | 143 | 150 | 313 | 128 | 384 | 187 | 156 | 166 | 142 | 207 | 0.66 | 347 | 0.22 | 675 |
CrB | 495 | 165 | 165 | 581 | 147 | 579 | 220 | 220 | 265 | 219 | 289 | 0.78 | 525 | 0.2 | 963 |
Cr2AlC[ | 396 | 117 | 156 | - | - | 382 | 173 | - | - | 146.9 | 225.8 | - | 357.7 | 0.236 | 774 |
Table 5 The calculated second-order elastic constants (cij/GPa), shear moduli (G/GPa), bulk moduli (B/GPa), Young’s moduli (E/GPa), Poisson ratio (μ), and Debye temperature (θD/K) of Cr4AlB4
Compound | c11 | c12 | c13 | c22 | c23 | c33 | c44 | c55 | c66 | G | B | G/B | E | μ | θD/K |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cr4AlB4 | 594 | 112 | 126 | 472 | 120 | 467 | 185 | 176 | 231 | 194 | 245 | 0.79 | 460 | 0.19 | 923 |
Cr2AlB2[ | 505 | 101 | 111 | 410 | 109 | 437 | 158 | 162 | 209 | 174 | 221 | 0.79 | 414 | 0.19 | 892 |
MoAlB[ | 327 | 143 | 150 | 313 | 128 | 384 | 187 | 156 | 166 | 142 | 207 | 0.66 | 347 | 0.22 | 675 |
CrB | 495 | 165 | 165 | 581 | 147 | 579 | 220 | 220 | 265 | 219 | 289 | 0.78 | 525 | 0.2 | 963 |
Cr2AlC[ | 396 | 117 | 156 | - | - | 382 | 173 | - | - | 146.9 | 225.8 | - | 357.7 | 0.236 | 774 |
[1] |
FAHRENHOLTZ W G, HILMAS G E, TALMY I G , et al. Refractory diborides of zirconium and hafnium. J. Am. Ceram. Soc., 2007,90(5):1347-1364.
DOI URL |
[2] |
BARSOUM M W . The MN+1AXN phases: a new class of solids; thermodynamically stable nanolaminates. Prog. Solid State Chem., 2000,28(1):201-281.
DOI URL |
[3] |
ADE M, HILLEBRECHT H . Ternary borides Cr2AlB2, Cr3AlB4, and Cr4AlB6: the first members of the series (CrB2)nCrAl with n = 1, 2, 3 and a unifying concept for ternary borides as MAB-phases. Inorganic Chemistry, 2015,54(13):6122-6135.
DOI URL PMID |
[4] |
JEITSCHKO W . The crystal structure of Fe2AlB2. Acta Crystallographica, 1969,25(1):163-165.
DOI URL PMID |
[5] |
NOWOTNY H, ROGL P . Ternary Metal Borides. Berlin Heidelberg:Springer. 1977: 413-438.
DOI URL PMID |
[6] |
TAN XIAOYAN, CHAI PING, THOMPSON COREY M , et al. Magnetocaloric effect in AlFe2B2: toward magnetic refrigerants from earth-abundant elements. Journal of the American Chemical Society, 2013,135(25):9553-9557.
DOI URL PMID |
[7] |
KOTA S, ZAPATA-SOLVAS E, LY A , et al. Synthesis and characterization of an alumina forming nanolaminated boride: MoAlB. Sci. Rep., 2016,6:26475.
DOI URL PMID |
[8] |
LI NING, BAI YUELEI, WANG SHUAI , et al. Rapid synthesis, electrical, and mechanical properties of polycrystalline Fe2AlB2 bulk from elemental powders. Journal of the American Ceramic Society, 2017,100(10):4407-4411.
DOI URL |
[9] |
KADAS K, IUSAN D, HELLSVIK J , et al. AlM2B2(M=Cr, Mn, Fe, Co, Ni): a group of nanolaminated materials. Journal of Physics-Condensed Matter, 2017,29(15):155402.
DOI URL PMID |
[10] |
ZHOU YANCHUN, XIANG HUIMIN, DAI FUZHI , et al. Electrical conductive and damage-tolerant nanolaminated MAB phases Cr2AlB2, Cr3AlB4 and Cr4AlB6. Materials Research Letters, 2017,5(6):1-9.
DOI URL |
[11] |
DAI FUZHI, FENG ZHIHAI, ZHOU YANCHUN . Easily tiltable B Al B linear chain: the origin of unusual mechanical properties of nanolaminated MAB phases (CrB2)nCrAl. Journal of Alloys and Compounds, 2017,723:462-466.
DOI URL |
[12] | CHABAN N F, KUZ'MA YU B . Cheminform abstract: Ternaere systeme Cr-Al-B und Mn-Al-B. Chemischer Informationsdienst, 1974, DOI: 10.1002/chin.197404029. |
[13] |
ZHANG HAIMING, DAI FU-ZHI, XIANG HUIMIN , et al.Crystal structure of Cr4AlB4: a new MAB phase compound discovered in Cr-Al-B system. Journal of Materials Science & Technology, 2019,35(4):530-534.
DOI URL PMID |
[14] |
DAI FUZHI, ZHANG HAIMING, XIANG HUIMIN , et al. Theoretical investigation on the stability, mechanical and thermal properties of the newly discovered MAB phase Cr4AlB4. Journal of Materials Science & Technology, 2019, DOI: 10.1016/j.jmst.2019.01.017.
DOI URL PMID |
[15] |
LIU BIN, LIU YUCHEN, ZHU CHANGHUA , et al.Advances on strategies for searching for next generation thermal barrier coating materials. Journal of Materials Science & Technology, 2019,35(5):833-851.
DOI URL PMID |
[16] |
LIU YUCHEN, COOPER VALENTINO R, WANG BANGHUI , et al. Discovery of ABO3 perovskites as thermal barrier coatings through high-throughput first principles calculations. Materials Research Letters, 2019,7(4):145-151.
DOI URL |
[17] |
KRESSE G FURTHMÜLLER J . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B: Condens. Matter, 1996,54(16):11169-11186.
DOI URL PMID |
[18] |
PERDEW J P, BURKE K, ERNZERHOF M . Generalized gradient approximation made simple. Physical Review Letters, 1996,77(18):3865-3868.
DOI URL PMID |
[19] |
HAMMER B, HANSEN L B, NORSKOV J K . Improved adsorption energetics within density-functional theory using revised Perdew- Burke-Ernzerhof functionals. Phys. Rev. B, 1999,59(11):7413-7421.
DOI URL |
[20] |
PERDEW JOHN P, CHEVARY J A, VOSKO S H , et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B: Condens. Matter, 1992,46(11):6671-6687.
DOI URL PMID |
[21] |
DAHLQVIST M, ALLING B, ROSÉN J . Stability trends of MAX phases from first principles. Physical Review B, 2010,81(22):220102.
DOI URL PMID |
[22] |
BAI YUELEI, HE XIAODONG, SUN YUE , et al. Chemical bonding and elastic properties of Ti3AC2 phases (A=Si, Ge, and Sn): a first-principle study. Solid State Sciences, 2010,12(7):1220-1225.
DOI URL |
[23] |
SUN ZHIMEI, LI SA, AHUJA RAJEEV , et al. Calculated elastic properties of M2AlC (M=Ti, V, Cr, Nb and Ta). Solid State Communications, 2004,129(9):589-592.
DOI URL |
[24] |
ANDERSON ORSON L . A simplified method for calculating the debye temperature from elastic constants. J. Phys. Chem. Solids, 1963,24(7):909-917.
DOI URL |
[25] |
BAI YUELEI, QI XINXIN, DUFF ANDREW , et al. Density functional theory insights into ternary layered boride MoAlB. Acta Materialia, 2017,132:69-81.
DOI URL |
[26] |
BAI YUELEI, QI XINXIN, HE XIAODONG , et al. Phase stability and weak metallic bonding within ternary-layered borides CrAlB, Cr2AlB2, Cr3AlB4, and Cr4AlB6. Journal of the American Ceramic Society, 2019,102(6):3715-3727.
DOI URL |
[27] |
CHONG XIAOYU, JIANG YEHUA, ZHOU RONG , et al. Elastic properties and electronic structures of CrxBy as superhard compounds. Journal of Alloys and Compounds, 2014,610:684-694.
DOI URL |
[28] |
ONODERA A, HIRANO H, YUASA T , et al. Static compression of Ti3SiC2 to 61 GPa. Appl. Phys. Lett., 1999,74(25):3782-3784.
DOI URL |
[29] |
WANG JIEMIN, ZHOU YANCHUN . Ab initio investigation of the electronic structure and bonding properties of the layered ternary compound Ti3SiC2 at high pressure. Journal of Physics-Condensed Matter, 2003,15(12):1983-1991.
DOI URL |
[30] |
FRANCIS BIRCH . Finite elastic strain of cubic crystals. Physical Review, 1947,71(11):809-824.
URL PMID |
[31] | BARSOUM W MICHEL . Mechanical Properties: Ambient Temperature. MAX Phases: Properties of Machinable Ternary Carbides and Nitrides. Weinheim: Wiley, 2013. |
[32] |
BAI YUELEI, DUFF ANDREW, JAYASEELAN DANIEL DONI , et al. DFT predictions of crystal structure, electronic structure, compressibility, and elastic properties of Hf-Al-C carbides. Journal of the American Ceramic Society, 2016,99(10):3449-3457.
DOI URL |
[33] |
BAI YUELEI, HE XIAODONG, WANG RONGGUO , et al. An ab initio study on compressibility of Al-containing MAX-phase carbides. Journal of Applied Physics, 2013,114(17):173709.
DOI URL |
[34] |
WANG CHANGYING, HAN HAN, ZHAO YUANYUAN , et al. Elastic, mechanical, electronic, and defective properties of Zr-Al-C nanolaminates from first principles. Journal of the American Ceramic Society, 2018,101(2):756-772.
DOI URL |
[35] | PUGH S F . Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philosophical Magazine, 2009,45(367):823-843. |
[1] | FAN Wugang, CAO Xiong, ZHOU Xiang, LI Ling, ZHAO Guannan, ZHANG Zhaoquan. Anticorrosion Performance of 8YSZ Ceramics in Simulated Aqueous Environment of Pressurized Water Reactor [J]. Journal of Inorganic Materials, 2024, 39(7): 803-809. |
[2] | WU Yuhao, PENG Renci, CHENG Chunyu, YANG Li, ZHOU Yichun. First-principles Study on Mechanical Properties and Melting Curve of HfxTa1-xC System [J]. Journal of Inorganic Materials, 2024, 39(7): 761-768. |
[3] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[4] | SUN Haiyang, JI Wei, WANG Weimin, FU Zhengyi. Design, Fabrication and Properties of Periodic Ordered Structural Composites with TiB-Ti Units [J]. Journal of Inorganic Materials, 2024, 39(6): 662-670. |
[5] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[6] | LIU Guoang, WANG Hailong, FANG Cheng, HUANG Feilong, YANG Huan. Effect of B4C Content on Mechanical Properties and Oxidation Resistance of (Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 697-706. |
[7] | SU Yi, SHI Yangfan, JIA Chenglan, CHI Pengtao, GAO Yang, MA Qingsong, CHEN Sian. Microstructure and Properties of C/HfC-SiC Composites Prepared by Slurry Impregnation Assisted Precursor Infiltration Pyrolysis [J]. Journal of Inorganic Materials, 2024, 39(6): 726-732. |
[8] | ZHANG Rui, ZHANG Kan, YUAN Mengya, GU Xinlei, ZHENG Weitao. Nitrogen Vacancy Regulated Lattice Distortion on Improvement of (NbMoTaW)Nx Thin Films: Mechanical Properties and Wear Resistance [J]. Journal of Inorganic Materials, 2024, 39(6): 715-725. |
[9] | LI Honglan, ZHANG Junmiao, SONG Erhong, YANG Xinglin. Mo/S Co-doped Graphene for Ammonia Synthesis: a Density Functional Theory Study [J]. Journal of Inorganic Materials, 2024, 39(5): 561-568. |
[10] | WU Guangyu, SHU Song, ZHANG Hongwei, LI Jianjun. Enhanced Styrene Adsorption by Grafted Lactone-based Activated Carbon [J]. Journal of Inorganic Materials, 2024, 39(4): 390-398. |
[11] | ZHANG Yuchen, LU Zhiyao, HE Xiaodong, SONG Guangping, ZHU Chuncheng, ZHENG Yongting, BAI Yuelei. Predictions of Phase Stability and Properties of S-group Elements Containing MAX Borides [J]. Journal of Inorganic Materials, 2024, 39(2): 225-232. |
[12] | LI Lei, CHENG Qunfeng. Recent Advances in the High Performance MXenes Nanocomposites [J]. Journal of Inorganic Materials, 2024, 39(2): 153-161. |
[13] | LIU Yanyan, XIE Xi, LIU Zengqian, ZHANG Zhefeng. Metal Matrix Composites Reinforced by MAX Phase Ceramics: Fabrication, Properties and Bioinspired Designs [J]. Journal of Inorganic Materials, 2024, 39(2): 145-152. |
[14] | XIE Tian, SONG Erhong. Effect of Elastic Strains on Adsorption Energies of C, H and O on Transition Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(11): 1292-1300. |
[15] | WANG Bo, CAI Delong, ZHU Qishuai, LI Daxin, YANG Zhihua, DUAN Xiaoming, LI Yanan, WANG Xuan, JIA Dechang, ZHOU Yu. Mechanical Properties and Thermal Shock Resistance of SrAl2Si2O8 Reinforced BN Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(10): 1182-1188. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||