Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (1): 53-60.DOI: 10.15541/jim20190160
Special Issue: MAX相和MXene材料; 计算材料论文精选(2020)
Previous Articles Next Articles
QI Xin-Xin1,SONG Guang-Ping1,YIN Wei-Long1,WANG Ming-Fu2,HE Xiao-Dong1,ZHENG Yong-Ting1,WANG Rong-Guo1,BAI Yue-Lei1()
Received:
2019-04-17
Revised:
2019-05-14
Published:
2020-01-20
Online:
2019-07-23
About author:
QI Xin-Xin(1995-), PhD Candidate. E-mail:16S118138@stu.hit.edu.cn
Supported by:
CLC Number:
QI Xin-Xin, SONG Guang-Ping, YIN Wei-Long, WANG Ming-Fu, HE Xiao-Dong, ZHENG Yong-Ting, WANG Rong-Guo, BAI Yue-Lei. Analysis on Phase Stability and Mechanical Property of Newly-discovered Ternary Layered Boride Cr4AlB4[J]. Journal of Inorganic Materials, 2020, 35(1): 53-60.
Lattice parameters | Internal coordinates | Density /(g·cm-3) | DOS at Ef /(States·eV-1· Unit cell-1) | Bulk modulus /GPa | Pressure derivative | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a/nm | b/nm | c/nm | V/nm3 | yCr1 | yCr2 | yAl | yB1 | yB2 | |||||||
Cr4AlB4 | LDA | 0.28766 | 1.8578 | 0.28867 | 0.15427 | - | - | - | - | - | - | - | - | - | |
GGA | PBE | 0.29312 | 1.8923 | 0.29512 | 0.16370 | - | - | - | - | - | - | - | - | ||
RPBE | 0.29334 | 1.8963 | 0.29551 | 0.16439 | 0.2926 | 0.5875 | 0.5 | 0.3803 | 0.6720 | 5.64 | 7.031 | 234.16 | 4.55 | ||
PW91 | 0.29197 | 1.8863 | 0.29435 | 0.16212 | - | - | - | - | - | - | - | - | - | ||
Exp[ | 0.29343 | 1.8891 | 0.29733 | 0.16481 | 0.2936 | 0.5859 | 0.5 | 0.3839 | 0.6646 | - | - | - | - | ||
CrB | Cal[ | 0.2924 | 0.7836 | 0.2911 | 0.06670 | - | - | - | - | - | 6.25 | - | - | - |
Table 1 Lattice parameters and some basic property of Cr4AlB4 and CrB
Lattice parameters | Internal coordinates | Density /(g·cm-3) | DOS at Ef /(States·eV-1· Unit cell-1) | Bulk modulus /GPa | Pressure derivative | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a/nm | b/nm | c/nm | V/nm3 | yCr1 | yCr2 | yAl | yB1 | yB2 | |||||||
Cr4AlB4 | LDA | 0.28766 | 1.8578 | 0.28867 | 0.15427 | - | - | - | - | - | - | - | - | - | |
GGA | PBE | 0.29312 | 1.8923 | 0.29512 | 0.16370 | - | - | - | - | - | - | - | - | ||
RPBE | 0.29334 | 1.8963 | 0.29551 | 0.16439 | 0.2926 | 0.5875 | 0.5 | 0.3803 | 0.6720 | 5.64 | 7.031 | 234.16 | 4.55 | ||
PW91 | 0.29197 | 1.8863 | 0.29435 | 0.16212 | - | - | - | - | - | - | - | - | - | ||
Exp[ | 0.29343 | 1.8891 | 0.29733 | 0.16481 | 0.2936 | 0.5859 | 0.5 | 0.3839 | 0.6646 | - | - | - | - | ||
CrB | Cal[ | 0.2924 | 0.7836 | 0.2911 | 0.06670 | - | - | - | - | - | 6.25 | - | - | - |
Cr4AlB4 | Cr2AlB2 | CrB | |||||
---|---|---|---|---|---|---|---|
d/nm | k/GPa | d/nm[ | k/GPa[ | d/nm | d/nm[ | k/GPa | |
Cr1-Al | 0.2662 | 625 | 0.26443 | 617 | - | - | - |
Cr1-B1 | 0.2169 | 885 | 0.22014 | 813 | 0.21712 | 0.2158 | 917 |
Cr1-B2 | 0.2180 | 1190 | 0.21876 | 1149 | 0.2212 | 0.2200 | 1123 |
Cr2-B1 | 0.2224 | 1074 | - | - | - | - | - |
Cr2-B2 | 0.2187 | 840 | - | - | - | - | - |
Cr2-B3 | 0.2288 | 826 | - | - | - | - | - |
B1-B2 | 0.1771 | 1123 | 0.17616 | 1099 | 0.17841 | 0.1722 | 1149 |
Al-B1 | 0.2269 | 574 | 0.22765 | 571 | - | - | - |
Table 2 Bond length and bond stiffness in Cr4AlB4, and Cr2AlB2 as well as binary borides CrB
Cr4AlB4 | Cr2AlB2 | CrB | |||||
---|---|---|---|---|---|---|---|
d/nm | k/GPa | d/nm[ | k/GPa[ | d/nm | d/nm[ | k/GPa | |
Cr1-Al | 0.2662 | 625 | 0.26443 | 617 | - | - | - |
Cr1-B1 | 0.2169 | 885 | 0.22014 | 813 | 0.21712 | 0.2158 | 917 |
Cr1-B2 | 0.2180 | 1190 | 0.21876 | 1149 | 0.2212 | 0.2200 | 1123 |
Cr2-B1 | 0.2224 | 1074 | - | - | - | - | - |
Cr2-B2 | 0.2187 | 840 | - | - | - | - | - |
Cr2-B3 | 0.2288 | 826 | - | - | - | - | - |
B1-B2 | 0.1771 | 1123 | 0.17616 | 1099 | 0.17841 | 0.1722 | 1149 |
Al-B1 | 0.2269 | 574 | 0.22765 | 571 | - | - | - |
Included phases | Compound | Most competing phases | ΔHcomp/(eV·atom-1) |
---|---|---|---|
CrB, CrB2, CrB4, Cr2B, Cr5B3, Cr3B4, Cr2B3, Cr2Al, Cr5Al8, Cr7Al45, AlB2, AlB12, Cr2AlB2, Cr3AlB4, Cr4AlB6 | Cr4AlB4 | 2CrB+Cr2AlB2 | -0.2207 |
Cr2AlB2[ | 2CrB+Al | -0.0461 |
Table 3 Formation enthalpy ΔHcomp for Cr4AlB4, phases with ΔHcomp < 0 are in bold
Included phases | Compound | Most competing phases | ΔHcomp/(eV·atom-1) |
---|---|---|---|
CrB, CrB2, CrB4, Cr2B, Cr5B3, Cr3B4, Cr2B3, Cr2Al, Cr5Al8, Cr7Al45, AlB2, AlB12, Cr2AlB2, Cr3AlB4, Cr4AlB6 | Cr4AlB4 | 2CrB+Cr2AlB2 | -0.2207 |
Cr2AlB2[ | 2CrB+Al | -0.0461 |
Fig. 3 Pressure dependence of the normalized cell volume V/V0 as well as the normalized lattice parameters a/a0, b/b0 and c/c0 of Cr4AlB4 (a) and the normalized bond length d/d0 in Cr4AlB4 (b)
Boder charge/e | Cr1 | Cr2 | Al | B1 | B2 |
---|---|---|---|---|---|
CrB | -0.79 | - | - | 0.78 | - |
Cr2AlB2[ | -0.37 | - | -1.50 | 1.12 | - |
Cr4AlB4 | -0.39 | -0.76 | -1.48 | 1.15 | 0.74 |
Table 4 Bader charge analysis of Cr4AlB4, Cr2AlB2 and CrB
Boder charge/e | Cr1 | Cr2 | Al | B1 | B2 |
---|---|---|---|---|---|
CrB | -0.79 | - | - | 0.78 | - |
Cr2AlB2[ | -0.37 | - | -1.50 | 1.12 | - |
Cr4AlB4 | -0.39 | -0.76 | -1.48 | 1.15 | 0.74 |
Compound | c11 | c12 | c13 | c22 | c23 | c33 | c44 | c55 | c66 | G | B | G/B | E | μ | θD/K |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cr4AlB4 | 594 | 112 | 126 | 472 | 120 | 467 | 185 | 176 | 231 | 194 | 245 | 0.79 | 460 | 0.19 | 923 |
Cr2AlB2[ | 505 | 101 | 111 | 410 | 109 | 437 | 158 | 162 | 209 | 174 | 221 | 0.79 | 414 | 0.19 | 892 |
MoAlB[ | 327 | 143 | 150 | 313 | 128 | 384 | 187 | 156 | 166 | 142 | 207 | 0.66 | 347 | 0.22 | 675 |
CrB | 495 | 165 | 165 | 581 | 147 | 579 | 220 | 220 | 265 | 219 | 289 | 0.78 | 525 | 0.2 | 963 |
Cr2AlC[ | 396 | 117 | 156 | - | - | 382 | 173 | - | - | 146.9 | 225.8 | - | 357.7 | 0.236 | 774 |
Table 5 The calculated second-order elastic constants (cij/GPa), shear moduli (G/GPa), bulk moduli (B/GPa), Young’s moduli (E/GPa), Poisson ratio (μ), and Debye temperature (θD/K) of Cr4AlB4
Compound | c11 | c12 | c13 | c22 | c23 | c33 | c44 | c55 | c66 | G | B | G/B | E | μ | θD/K |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cr4AlB4 | 594 | 112 | 126 | 472 | 120 | 467 | 185 | 176 | 231 | 194 | 245 | 0.79 | 460 | 0.19 | 923 |
Cr2AlB2[ | 505 | 101 | 111 | 410 | 109 | 437 | 158 | 162 | 209 | 174 | 221 | 0.79 | 414 | 0.19 | 892 |
MoAlB[ | 327 | 143 | 150 | 313 | 128 | 384 | 187 | 156 | 166 | 142 | 207 | 0.66 | 347 | 0.22 | 675 |
CrB | 495 | 165 | 165 | 581 | 147 | 579 | 220 | 220 | 265 | 219 | 289 | 0.78 | 525 | 0.2 | 963 |
Cr2AlC[ | 396 | 117 | 156 | - | - | 382 | 173 | - | - | 146.9 | 225.8 | - | 357.7 | 0.236 | 774 |
[1] |
FAHRENHOLTZ W G, HILMAS G E, TALMY I G , et al. Refractory diborides of zirconium and hafnium. J. Am. Ceram. Soc., 2007,90(5):1347-1364.
DOI URL |
[2] |
BARSOUM M W . The MN+1AXN phases: a new class of solids; thermodynamically stable nanolaminates. Prog. Solid State Chem., 2000,28(1):201-281.
DOI URL |
[3] |
ADE M, HILLEBRECHT H . Ternary borides Cr2AlB2, Cr3AlB4, and Cr4AlB6: the first members of the series (CrB2)nCrAl with n = 1, 2, 3 and a unifying concept for ternary borides as MAB-phases. Inorganic Chemistry, 2015,54(13):6122-6135.
DOI URL PMID |
[4] |
JEITSCHKO W . The crystal structure of Fe2AlB2. Acta Crystallographica, 1969,25(1):163-165.
DOI URL PMID |
[5] |
NOWOTNY H, ROGL P . Ternary Metal Borides. Berlin Heidelberg:Springer. 1977: 413-438.
DOI URL PMID |
[6] |
TAN XIAOYAN, CHAI PING, THOMPSON COREY M , et al. Magnetocaloric effect in AlFe2B2: toward magnetic refrigerants from earth-abundant elements. Journal of the American Chemical Society, 2013,135(25):9553-9557.
DOI URL PMID |
[7] |
KOTA S, ZAPATA-SOLVAS E, LY A , et al. Synthesis and characterization of an alumina forming nanolaminated boride: MoAlB. Sci. Rep., 2016,6:26475.
DOI URL PMID |
[8] |
LI NING, BAI YUELEI, WANG SHUAI , et al. Rapid synthesis, electrical, and mechanical properties of polycrystalline Fe2AlB2 bulk from elemental powders. Journal of the American Ceramic Society, 2017,100(10):4407-4411.
DOI URL |
[9] |
KADAS K, IUSAN D, HELLSVIK J , et al. AlM2B2(M=Cr, Mn, Fe, Co, Ni): a group of nanolaminated materials. Journal of Physics-Condensed Matter, 2017,29(15):155402.
DOI URL PMID |
[10] |
ZHOU YANCHUN, XIANG HUIMIN, DAI FUZHI , et al. Electrical conductive and damage-tolerant nanolaminated MAB phases Cr2AlB2, Cr3AlB4 and Cr4AlB6. Materials Research Letters, 2017,5(6):1-9.
DOI URL |
[11] |
DAI FUZHI, FENG ZHIHAI, ZHOU YANCHUN . Easily tiltable B Al B linear chain: the origin of unusual mechanical properties of nanolaminated MAB phases (CrB2)nCrAl. Journal of Alloys and Compounds, 2017,723:462-466.
DOI URL |
[12] | CHABAN N F, KUZ'MA YU B . Cheminform abstract: Ternaere systeme Cr-Al-B und Mn-Al-B. Chemischer Informationsdienst, 1974, DOI: 10.1002/chin.197404029. |
[13] |
ZHANG HAIMING, DAI FU-ZHI, XIANG HUIMIN , et al.Crystal structure of Cr4AlB4: a new MAB phase compound discovered in Cr-Al-B system. Journal of Materials Science & Technology, 2019,35(4):530-534.
DOI URL PMID |
[14] |
DAI FUZHI, ZHANG HAIMING, XIANG HUIMIN , et al. Theoretical investigation on the stability, mechanical and thermal properties of the newly discovered MAB phase Cr4AlB4. Journal of Materials Science & Technology, 2019, DOI: 10.1016/j.jmst.2019.01.017.
DOI URL PMID |
[15] |
LIU BIN, LIU YUCHEN, ZHU CHANGHUA , et al.Advances on strategies for searching for next generation thermal barrier coating materials. Journal of Materials Science & Technology, 2019,35(5):833-851.
DOI URL PMID |
[16] |
LIU YUCHEN, COOPER VALENTINO R, WANG BANGHUI , et al. Discovery of ABO3 perovskites as thermal barrier coatings through high-throughput first principles calculations. Materials Research Letters, 2019,7(4):145-151.
DOI URL |
[17] |
KRESSE G FURTHMÜLLER J . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B: Condens. Matter, 1996,54(16):11169-11186.
DOI URL PMID |
[18] |
PERDEW J P, BURKE K, ERNZERHOF M . Generalized gradient approximation made simple. Physical Review Letters, 1996,77(18):3865-3868.
DOI URL PMID |
[19] |
HAMMER B, HANSEN L B, NORSKOV J K . Improved adsorption energetics within density-functional theory using revised Perdew- Burke-Ernzerhof functionals. Phys. Rev. B, 1999,59(11):7413-7421.
DOI URL |
[20] |
PERDEW JOHN P, CHEVARY J A, VOSKO S H , et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B: Condens. Matter, 1992,46(11):6671-6687.
DOI URL PMID |
[21] |
DAHLQVIST M, ALLING B, ROSÉN J . Stability trends of MAX phases from first principles. Physical Review B, 2010,81(22):220102.
DOI URL PMID |
[22] |
BAI YUELEI, HE XIAODONG, SUN YUE , et al. Chemical bonding and elastic properties of Ti3AC2 phases (A=Si, Ge, and Sn): a first-principle study. Solid State Sciences, 2010,12(7):1220-1225.
DOI URL |
[23] |
SUN ZHIMEI, LI SA, AHUJA RAJEEV , et al. Calculated elastic properties of M2AlC (M=Ti, V, Cr, Nb and Ta). Solid State Communications, 2004,129(9):589-592.
DOI URL |
[24] |
ANDERSON ORSON L . A simplified method for calculating the debye temperature from elastic constants. J. Phys. Chem. Solids, 1963,24(7):909-917.
DOI URL |
[25] |
BAI YUELEI, QI XINXIN, DUFF ANDREW , et al. Density functional theory insights into ternary layered boride MoAlB. Acta Materialia, 2017,132:69-81.
DOI URL |
[26] |
BAI YUELEI, QI XINXIN, HE XIAODONG , et al. Phase stability and weak metallic bonding within ternary-layered borides CrAlB, Cr2AlB2, Cr3AlB4, and Cr4AlB6. Journal of the American Ceramic Society, 2019,102(6):3715-3727.
DOI URL |
[27] |
CHONG XIAOYU, JIANG YEHUA, ZHOU RONG , et al. Elastic properties and electronic structures of CrxBy as superhard compounds. Journal of Alloys and Compounds, 2014,610:684-694.
DOI URL |
[28] |
ONODERA A, HIRANO H, YUASA T , et al. Static compression of Ti3SiC2 to 61 GPa. Appl. Phys. Lett., 1999,74(25):3782-3784.
DOI URL |
[29] |
WANG JIEMIN, ZHOU YANCHUN . Ab initio investigation of the electronic structure and bonding properties of the layered ternary compound Ti3SiC2 at high pressure. Journal of Physics-Condensed Matter, 2003,15(12):1983-1991.
DOI URL |
[30] |
FRANCIS BIRCH . Finite elastic strain of cubic crystals. Physical Review, 1947,71(11):809-824.
URL PMID |
[31] | BARSOUM W MICHEL . Mechanical Properties: Ambient Temperature. MAX Phases: Properties of Machinable Ternary Carbides and Nitrides. Weinheim: Wiley, 2013. |
[32] |
BAI YUELEI, DUFF ANDREW, JAYASEELAN DANIEL DONI , et al. DFT predictions of crystal structure, electronic structure, compressibility, and elastic properties of Hf-Al-C carbides. Journal of the American Ceramic Society, 2016,99(10):3449-3457.
DOI URL |
[33] |
BAI YUELEI, HE XIAODONG, WANG RONGGUO , et al. An ab initio study on compressibility of Al-containing MAX-phase carbides. Journal of Applied Physics, 2013,114(17):173709.
DOI URL |
[34] |
WANG CHANGYING, HAN HAN, ZHAO YUANYUAN , et al. Elastic, mechanical, electronic, and defective properties of Zr-Al-C nanolaminates from first principles. Journal of the American Ceramic Society, 2018,101(2):756-772.
DOI URL |
[35] | PUGH S F . Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philosophical Magazine, 2009,45(367):823-843. |
[1] | SUN Yuxuan, WANG Zheng, SHI Xue, SHI Ying, DU Wentong, MAN Zhenyong, ZHENG Liaoying, LI Guorong. Defect Dipole Thermal-stability to the Electro-mechanical Properties of Fe Doped PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(5): 545-551. |
[2] | CHEN Yi, QIU Haipeng, CHEN Mingwei, XU Hao, CUI Heng. SiC/SiC Composite: Matrix Boron Modification and Mechanical Properties [J]. Journal of Inorganic Materials, 2025, 40(5): 504-510. |
[3] | CUI Ning, ZHANG Yuxin, WANG Lujie, LI Tongyang, YU Yuan, TANG Huaguo, QIAO Zhuhui. Single-phase Formation Process and Carbon Vacancy Regulation of (TiVNbMoW)Cx High-entropy Ceramics [J]. Journal of Inorganic Materials, 2025, 40(5): 511-520. |
[4] | LI Ziwei, GONG Weilu, CUI Haifeng, YE Li, HAN Weijian, ZHAO Tong. (Zr, Hf, Nb, Ta, W)C-SiC Composite Ceramics: Preparation via Precursor Route and Properties [J]. Journal of Inorganic Materials, 2025, 40(3): 271-280. |
[5] | GAO Chenguang, SUN Xiaoliang, CHEN Jun, LI Daxin, CHEN Qingqing, JIA Dechang, ZHOU Yu. SiBCN-rGO Ceramic Fibers Based on Wet Spinning Technology: Microstructure, Mechanical and Microwave-absorbing Properties [J]. Journal of Inorganic Materials, 2025, 40(3): 290-296. |
[6] | MU Haojie, ZHANG Yuanjiang, YU Bin, FU Xiumei, ZHOU Shibin, LI Xiaodong. Preparation and Properties of ZrO2 Doped Y2O3-MgO Nanocomposite Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 281-289. |
[7] | WANG Yueyue, HUANG Jiahui, KONG Hongxing, LI Huaizhu, YAO Xiaohong. Silver Loaded Radial Mesoporous Silica: Preparation and Application in Dental Resins [J]. Journal of Inorganic Materials, 2025, 40(1): 77-83. |
[8] | LIU Lei, GUO Ruihua, WANG Li, WANG Yan, ZHANG Guofang, GUAN Lili. Oxygen Reduction Reaction on Pt3Co High-index Facets by Density Functional Theory [J]. Journal of Inorganic Materials, 2025, 40(1): 39-46. |
[9] | FAN Wugang, CAO Xiong, ZHOU Xiang, LI Ling, ZHAO Guannan, ZHANG Zhaoquan. Anticorrosion Performance of 8YSZ Ceramics in Simulated Aqueous Environment of Pressurized Water Reactor [J]. Journal of Inorganic Materials, 2024, 39(7): 803-809. |
[10] | WU Yuhao, PENG Renci, CHENG Chunyu, YANG Li, ZHOU Yichun. First-principles Study on Mechanical Properties and Melting Curve of HfxTa1-xC System [J]. Journal of Inorganic Materials, 2024, 39(7): 761-768. |
[11] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[12] | SUN Haiyang, JI Wei, WANG Weimin, FU Zhengyi. Design, Fabrication and Properties of Periodic Ordered Structural Composites with TiB-Ti Units [J]. Journal of Inorganic Materials, 2024, 39(6): 662-670. |
[13] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[14] | LIU Guoang, WANG Hailong, FANG Cheng, HUANG Feilong, YANG Huan. Effect of B4C Content on Mechanical Properties and Oxidation Resistance of (Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 697-706. |
[15] | SU Yi, SHI Yangfan, JIA Chenglan, CHI Pengtao, GAO Yang, MA Qingsong, CHEN Sian. Microstructure and Properties of C/HfC-SiC Composites Prepared by Slurry Impregnation Assisted Precursor Infiltration Pyrolysis [J]. Journal of Inorganic Materials, 2024, 39(6): 726-732. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||