Journal of Inorganic Materials ›› 2018, Vol. 33 ›› Issue (11): 1173-1178.DOI: 10.15541/jim20180027
• Orginal Article • Previous Articles Next Articles
WEI Jing1,2, LI Han-Chao1,3, KE Pei-Ling1, WANG Ai-Ying1
Received:
2018-01-16
Revised:
2018-03-09
Published:
2018-11-16
Online:
2018-10-20
About author:
WEI Jing. E-mail: weijing@nimte.ac.cn
Supported by:
CLC Number:
WEI Jing, LI Han-Chao, KE Pei-Ling, WANG Ai-Ying. Characterization of Tetrahedral Amorphous Carbon Film with Various Thickness by High Through-put Method[J]. Journal of Inorganic Materials, 2018, 33(11): 1173-1178.
Process | Duct voltage/V | Arc current/A | Bias voltage/V | Ar flux/sccm | Time/min |
---|---|---|---|---|---|
Arc plasma etching | 10.0 | 50.0 | -300 | 20.0 | 5.0 |
Film deposition | 10.0 | 50.0 | -80 | 3.0 | 15/30/45 |
Table 1 Parameter of arc plasma etching and deposition for ta-C films
Process | Duct voltage/V | Arc current/A | Bias voltage/V | Ar flux/sccm | Time/min |
---|---|---|---|---|---|
Arc plasma etching | 10.0 | 50.0 | -300 | 20.0 | 5.0 |
Film deposition | 10.0 | 50.0 | -80 | 3.0 | 15/30/45 |
Fig. 5 XPS C1s core level spectra (a) and sp3 content (c) of ta-C films with various film thickness, typical C1s core level spectrum of ta-C film (41.3 nm) (b)
Fig. 6 Typical extinction coefficient (a) and optical bandgap (b) spectra of ta-C film with thickness of 41.3 nm, optical band gap of ta-C with different film thicknesses (c)
[1] | ROBERTSON J.Diamond-like amorphous carbon.Materials Science and Engineering R, 2002, 37(4/5/6): 129-281. |
[2] | ERDEMIR A, FENSKE G R, TERRY J, et al. Effect of source gas and deposition method on friction and wear performance of diamond-like carbon films. Surface and Coatings Technology, 1997, 94-95(1): 525-530. |
[3] | WANG M, JIANG X, STRIZKER B, et al.Adhesion of hydrogenated amorphous carbon films on silicon substrates and its enhancement.Thin Solid Films, 1991, 197(1/2): 57-66. |
[4] | ENKE K.Some new results on the fabrication of and the mechanical, electrical and optical properties of I-carbon layers.Thin Solid Films, 1981, 80(1/2/3): 227-234. |
[5] | PALOMAKI T, WESTER N, CARO M A, et al.Electron transport determines the electrochemical properties of tetrahedral amorphous carbon (ta-C) thin films.Electrochimica Acta, 2017, 225: 1-10. |
[6] | MCCANN R, ROY S S, PAPAKONSTANTINOU P, et al.The effect of thickness and arc current on the structural properties of FCVA synthesised ta-C and ta-C: N films.Diamond and related materials, 2005, 14(3): 983-988. |
[7] | SHEEJA D, TAY B K, LEONG K W, et al.Effect of film thickness on the stress and adhesion of diamond-like carbon coatings.Diamond and Related Materials, 2002, 11(9): 1643-1647. |
[8] | ZAVALEYEV V, WALKOWICZ J, KUZNETSOVA T, et al.The dependence of the structure and mechanical properties of thin ta-C coatings deposited using electromagnetic venetian blind plasma filter on their thickness.Thin Solid Films, 2017, 638: 153-158. |
[9] | LI X W, XU S P, KE P L, et al.Thickness dependence of properties and structure of ultrathin tetrahedral amorphous carbon films: a molecular dynamics simulation.Surface & Coatings Technology, 2014, 258: 938-942. |
[10] | MIYAKE S, KUROSAKA W, OSHIMOTO K.Nanometre scale mechanical properties of extremely thin diamond-like carbon films.Tribology - Materials, Surfaces & Interfaces, 2013, 3(4): 158-164. |
[11] | SUNDARARAJAN S, BHUSHAN B.Development of a continuous microscratch technique in an atomic force microscope and its application to study scratch resistance of ultrathin hard amorphous carbon coatings.Journal of Materials Research, 2001, 16(2): 437-445. |
[12] | MA X G, KOMVOPOULOS K, WAN D, et al.Effects of film thickness and contact load on nanotribological properties of sputtered amorphous carbon thin films.Wear, 2003, 254(10): 1010-1018. |
[13] | LI H B, SUN L L, WU G S, et al.Simulation of magnetic field distribution in doubly-bent filter cathode of vacuum arc film growth setup.Chinese Journal of Vacuum Science and Technology, 2008, 29(3): 614-620. |
[14] | CAI J, YANG W, DAI W, et al.Effect of substrate bias on structure and properties of Ta-C films.China Surface Engineering, 2011, 24(6): 62-67. |
[15] | CAI J, YANG W, KE P L, et al.Influence of Ar flow rate on microstructures and tribological properties of tetrahedral amorphous carbon films.Chinese Journal of Vacuum Science and Technology, 2012, 32(8): 740-745. |
[16] | XU S P, LI X W, HUANG M D, et al. Stress reduction dependent on incident angles of carbon ions in ultrathin tetrahedral amorphous carbon films. Applied Physics Letters, 2014,104(14): 141908-1-4. |
[17] | GUO T, ZUO X, GUO P, et al.Effect of etching process on growth and properties of tetrahedral amorphous carbon film.Surface Technology, 2017, 46(4): 143-149. |
[18] | ZHAO J C.A perspective on the materials genome initiative.Chinese Journal of Nature, 2014, 36(2): 89-104. |
[19] | WANG HAI-ZHOU, WANG HONG, DING HONG, et al.Progress in high-throughput materials synthesis and characterization.Science & Technology Review, 2015, 33(10): 31-49. |
[20] | EVANS J W.Factors mediating smoothness in epitaxial thin-film growth.Physical Review B, 1991, 43(5): 3897-3905. |
[21] | ZHONG M, ZHANG C H, LUO J B.Effect of substrate morphology on the roughness evolution of ultrathin DLC films.Applied Surface Science, 2008, 254(21): 6742-6748. |
[22] | FERRARI A C, ROBERTSON J.Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond.Philosophical Transactions, 2004, 362(1824): 2477-2512. |
[23] | TAUC J, GRIGOROV R, VANCU A.Optical properties and electronic structure of amorphous germ anium.Phys. Status Solidi, 1966, 15(2): 627-637. |
[24] | 薛群基, 王立平. 类金刚石碳基薄膜材料. 北京: 科学出版社, 2012, 585. |
[1] | FAN Wugang, CAO Xiong, ZHOU Xiang, LI Ling, ZHAO Guannan, ZHANG Zhaoquan. Anticorrosion Performance of 8YSZ Ceramics in Simulated Aqueous Environment of Pressurized Water Reactor [J]. Journal of Inorganic Materials, 2024, 39(7): 803-809. |
[2] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[3] | JIANG Lingyi, PANG Shengyang, YANG Chao, ZHANG Yue, HU Chenglong, TANG Sufang. Preparation and Oxidation Behaviors of C/SiC-BN Composites [J]. Journal of Inorganic Materials, 2024, 39(7): 779-786. |
[4] | ZHENG Yawen, ZHANG Cuiping, ZHANG Ruijie, XIA Qian, RU Hongqiang. Fabrication of Boron Carbide Ceramic Composites by Boronic Acid Carbothermal Reduction and Silicon Infiltration Reaction Sintering [J]. Journal of Inorganic Materials, 2024, 39(6): 707-714. |
[5] | XUE Yifan, LI Weijie, ZHANG Zhongwei, PANG Xu, LIU Yu. Process Control of PyC Interphases Microstructure and Uniformity in Carbon Fiber Cloth [J]. Journal of Inorganic Materials, 2024, 39(4): 399-408. |
[6] | SUN Chuan, HE Pengfei, HU Zhenfeng, WANG Rong, XING Yue, ZHANG Zhibin, LI Jinglong, WAN Chunlei, LIANG Xiubing. SiC-based Ceramic Materials Incorporating GNPs Array: Preparation and Mechanical Characterization [J]. Journal of Inorganic Materials, 2024, 39(3): 267-273. |
[7] | ZHENG Jiaqian, LU Xiao, LU Yajie, WANG Yingjun, WANG Zhen, LU Jianxi. Functional Bioadaptability in Medical Bioceramics: Biological Mechanism and Application [J]. Journal of Inorganic Materials, 2024, 39(1): 1-16. |
[8] | HE Danqi, WEI Mingxu, LIU Ruizhi, TANG Zhixin, ZHAI Pengcheng, ZHAO Wenyu. Heavy-Fermion YbAl3 Materials: One-step Synthesis and Enhanced Thermoelectric Performance [J]. Journal of Inorganic Materials, 2023, 38(5): 577-582. |
[9] | WU Shuang, GOU Yanzi, WANG Yongshou, SONG Quzhi, ZHANG Qingyu, WANG Yingde. Effect of Heat Treatment on Composition, Microstructure and Mechanical Property of Domestic KD-SA SiC Fibers [J]. Journal of Inorganic Materials, 2023, 38(5): 569-576. |
[10] | XIE Jiaye, LI Liwen, ZHU Qiang. Contrastive Study on in Vitro Antibacterial Property and Biocompatibility of Three Clinical Pulp Capping Agents [J]. Journal of Inorganic Materials, 2023, 38(12): 1449-1456. |
[11] | LI Jianbo, TIAN Zhen, JIANG Quanwei, YU Lifeng, KANG Huijun, CAO Zhiqiang, WANG Tongmin. Effects of Different Element Doping on Microstructure and Thermoelectric Properties of CaTiO3 [J]. Journal of Inorganic Materials, 2023, 38(12): 1396-1404. |
[12] | HUANG Yihua, HUANG Zhengren, SHA Wenhao, ZHOU Yabin, TAN Zhouxi, ZHANG Mingkang. Thick SiC Green Bodies: Degreasing Analysis and Pressureless High Density Sintering [J]. Journal of Inorganic Materials, 2023, 38(10): 1163-1168. |
[13] | WU Dongjiang, ZHAO Ziyuan, YU Xuexin, MA Guangyi, YOU Zhulin, REN Guanhui, NIU Fangyong. Direct Additive Manufacturing of Al2O3-TiCp Composite Ceramics by Laser Directed Energy Deposition [J]. Journal of Inorganic Materials, 2023, 38(10): 1183-1192. |
[14] | ZHANG Ye, ZENG Yuping. Progress of Porous Silicon Nitride Ceramics Prepared via Self-propagating High Temperature Synthesis [J]. Journal of Inorganic Materials, 2022, 37(8): 853-864. |
[15] | XIA Qian, SUN Shihao, ZHAO Yiliang, ZHANG Cuiping, RU Hongqiang, WANG Wei, YUE Xinyan. Effect of Boron Carbide Particle Size Distribution on the Microstructure and Properties of Reaction Bonded Boron Carbide Ceramic Composites by Silicon Infiltration [J]. Journal of Inorganic Materials, 2022, 37(6): 636-642. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 919
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 682
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||