无机材料学报 ›› 2024, Vol. 39 ›› Issue (3): 299-305.DOI: 10.15541/jim20230312 CSTR: 32189.14.10.15541/jim20230312
所属专题: 【能源环境】锂离子电池(202409)
程节(), 周月, 罗薪涛, 高美婷, 骆思妃, 蔡丹敏, 吴雪垠, 朱立才, 袁中直(
)
收稿日期:
2023-07-11
修回日期:
2023-09-01
出版日期:
2024-03-20
网络出版日期:
2023-09-12
通讯作者:
袁中直, 教授. E-mail: yuanzz@scnu.edu.cn作者简介:
程节(1998-), 女, 硕士研究生. E-mail: 15007936259@163.com
CHENG Jie(), ZHOU Yue, LUO Xintao, GAO Meiting, LUO Sifei, CAI Danmin, WU Xueyin, ZHU Licai, YUAN Zhongzhi(
)
Received:
2023-07-11
Revised:
2023-09-01
Published:
2024-03-20
Online:
2023-09-12
Contact:
YUAN Zhongzhi, professor. E-mail: yuanzz@scnu.edu.cnAbout author:
CHENG Jie (1998-), female, Master candidate. E-mail: 15007936259@163.com
摘要:
FeF3∙0.33H2O具有理论容量和电压高的特点, 但其导电性差、氧化还原反应过程中体积变化严重导致电化学循环性能不佳, 应用受到限制。本研究采用多巴胺自组装包覆纳米立方Fe2O3颗粒, 再经过碳化、HCl刻蚀和HF氟化的策略, 合成了由N掺杂石墨烯外壳和纳米立方FeF3∙·0.33H2O内核所构成的蛋黄壳结构复合材料FeF3∙0.33H2O@CNBs, 粒径约250 nm, 碳壳厚度为30~40 nm。FeF3∙0.33H2O@CNBs在0.2C (1C=237 mA·g-1)电流密度下充放电初始容量为208 mAh·g-1, 循环50圈之后容量仍然有173 mAh·g-1, 每圈容量衰减率仅为0.3%; 而纯FeF3∙0.33H2O初始容量只有112 mAh·g-1, 循环50圈之后只有95 mAh·g-1。FeF3∙0.33H2O@CNBs的循环性能明显优于FeF3∙0.33H2O, 同时0.1C~1C充放电结果表明其倍率性能也明显优于FeF3∙0.33H2O。这是因为该策略制备的N掺杂石墨烯外壳提供了良好的电子/离子输运性能, 同时碳壳可缓冲和抑制内核FeF3∙0.33H2O的体积变化, 其空隙体积对电解液的储液保液性能缩短了离子迁移距离, 提升了Li+迁移速率, 从而得到了比文献报道更好的电化学性能。
中图分类号:
程节, 周月, 罗薪涛, 高美婷, 骆思妃, 蔡丹敏, 吴雪垠, 朱立才, 袁中直. 蛋黄壳结构FeF3·0.33H2O@N掺杂碳纳米笼正极材料的构筑及其电化学性能[J]. 无机材料学报, 2024, 39(3): 299-305.
CHENG Jie, ZHOU Yue, LUO Xintao, GAO Meiting, LUO Sifei, CAI Danmin, WU Xueyin, ZHU Licai, YUAN Zhongzhi. Construction and Electrochemical Properties of Yolk-shell Structured FeF3·0.33H2O@N-doped Graphene Nanoboxes[J]. Journal of Inorganic Materials, 2024, 39(3): 299-305.
图4 FeF3·0.33H2O@CNBs的(a)XPS总谱图, 以及高分辨(b)Fe2p, (c) F1s, (d)C1s, (e)N1s XPS谱图
Fig. 4 (a) XPS survey spectrum and high-resolution (b) Fe2p, (c) F1s, (d) C1s, (e) N1s XPS spectra of FeF3·0.33H2O@CNBs
图5 (a, b)Fe2O3纳米立方体, (c, d)核壳结构Fe2O3@C以及(e, f)蛋黄壳结构FeF3·0.33H2O@CNBs的TEM照片
Fig. 5 TEM images of (a, b) cubic Fe2O3 nano-particle, (c, d) core-shell Fe2O3@C and (e, f) yolk-shell FeF3·0.33H2O@CNB
图7 FeF3·0.33H2O@CNBs和纯FeF3·0.33H2O作为正极材料的锂离子电池的电化学性能
Fig. 7 Electrochemical performances of FeF3·0.33H2O@CNBs and bare FeF3·0.33H2O as cathodes of lithium ion cell (a) Voltage-capacity curves of FeF3·0.33H2O@CNBs at 0.2C; (b) Voltage-capacity curves of bare FeF3·0.33H2O at 0.2C; (c) Cycling and (d) rate performances of FeF3·0.33H2O@CNBs and bare FeF3·0.33H2O. Colorful figures are available on website
图8 FeF3·0.33H2O@CNBs和纯FeF3·0.33H2O电极的电化学阻抗
Fig. 8 Electrochemical impedance spectra of FeF3·0.33H2O@CNBs and bare FeF3·0.33H2O (a) Nyquist plots; (b) Relationship between Z′ and ω−1/2 in low-frequency region
图S2 Li/Fe2O3@CNBs电池的电化学性能
Fig. S2 Electrochemical performance of the Li/Fe2O3@CNBs cell(a) Voltage-capacity curves at 0.1C; (b) Cycling performance at 0.5C
Material | Particle size | Voltage range/V | Discharge density | Initial discharge capacity/(mAh·g-1) | (Reversible capacity/ (mAh·g-1))/cycle number | Ref. |
---|---|---|---|---|---|---|
FeF3·0.33H2O@CNBs | 250 nm | 2.0-4.5 | 0.2C | 208 | 173.4/50 | This work |
FeF3·0.33H2O/C | 1-1.7 µm | 2.0-4.5 | 1C | 187.1 | 172.3/50 | [ |
FeF3·0.33H2O@CNHs | 80-100 nm | 1.5-4.5 | 1C | 155 | 154/50 | [ |
FeF3·0.33H2O/MWCNTs | 30 nm | 2.0-4.3 | 0.1C | 186 | 116/50 | [ |
FeF3·0.33H2O@rGO | 400 nm | 2.0-4.5 | 0.1C | 205 | 183.8/60 | [ |
FeF3·0.33H2O/C | 1-5 µm | 1.5-4.5 | 1C | 276.4 | 193.5/50 | [ |
Co/Ni dual-doped FeF3·0.33H2O | 200 nm | 1.5-4.5 | 5C | 200.1 | 177.8/400 | [ |
FeF3·0.33H2O/rGO | 150 nm | 1.8-4.5 | 0.5C | 208.3 | 133.1/100 | [ |
表S1 本工作与文献报道FeF3·0.33H2O类正极材料的性能对比
Table S1 Performance comparison of FeF3·0.33H2O based cathode materials of lithium ion battery in this work and literature
Material | Particle size | Voltage range/V | Discharge density | Initial discharge capacity/(mAh·g-1) | (Reversible capacity/ (mAh·g-1))/cycle number | Ref. |
---|---|---|---|---|---|---|
FeF3·0.33H2O@CNBs | 250 nm | 2.0-4.5 | 0.2C | 208 | 173.4/50 | This work |
FeF3·0.33H2O/C | 1-1.7 µm | 2.0-4.5 | 1C | 187.1 | 172.3/50 | [ |
FeF3·0.33H2O@CNHs | 80-100 nm | 1.5-4.5 | 1C | 155 | 154/50 | [ |
FeF3·0.33H2O/MWCNTs | 30 nm | 2.0-4.3 | 0.1C | 186 | 116/50 | [ |
FeF3·0.33H2O@rGO | 400 nm | 2.0-4.5 | 0.1C | 205 | 183.8/60 | [ |
FeF3·0.33H2O/C | 1-5 µm | 1.5-4.5 | 1C | 276.4 | 193.5/50 | [ |
Co/Ni dual-doped FeF3·0.33H2O | 200 nm | 1.5-4.5 | 5C | 200.1 | 177.8/400 | [ |
FeF3·0.33H2O/rGO | 150 nm | 1.8-4.5 | 0.5C | 208.3 | 133.1/100 | [ |
Sample | Rs/Ω | Rct/Ω | DLi+ /(m2·s-1) |
---|---|---|---|
FeF3·0.33H2O@CNBs | 3.39 | 46.0 | 1.84×10-14 |
FeF3·0.33H2O | 8.78 | 112.6 | 2.74×10-15 |
表S2 FeF3·0.33H2O@CNBs和纯FeF3·0.33H2O的Li+扩散系数
Table S2 Li-ion diffusion coefficients of FeF3·0.33H2O@CNBs and bare FeF3·0.33H2O
Sample | Rs/Ω | Rct/Ω | DLi+ /(m2·s-1) |
---|---|---|---|
FeF3·0.33H2O@CNBs | 3.39 | 46.0 | 1.84×10-14 |
FeF3·0.33H2O | 8.78 | 112.6 | 2.74×10-15 |
[1] |
DUFFNER F, KRONEMEYER N, TUBKE J, et al. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nature Energy, 2021, 6(2): 123.
DOI |
[2] |
MANTHIRAM A. A reflection on lithium-ion battery cathode chemistry. Nature Communications, 2020, 11: 1550.
DOI PMID |
[3] | SUN L D, LI Y, FENG W. Metal fluoride cathode materials for lithium rechargeable batteries: focus on iron fluorides. Small Methods, 2023, 7: 202201152. |
[4] |
LIU L, GUO H, ZHOU M, et al. A comparison among FeF3·3H2O, FeF3·0.33H2O and FeF3 cathode materials for lithium ion batteries: structural, electrochemical, and mechanism studies. Journal of Power Sources, 2013, 238: 501.
DOI URL |
[5] | XIAO A W, LEE H J, CAPONE I, et al. Understanding the conversion mechanism and performance of monodisperse FeF2 nanocrystal cathodes. Nature Materials, 2020, 644(2): 644. |
[6] |
LI C, GU L, TSUKIMOTO S, et al. Low-temperature ionic-liquid- based synthesis of nanostructured iron-based fluoride cathodes for lithium batteries. Advanced Materials, 2010, 22(33): 3650.
DOI URL |
[7] |
TAN J, LIU J, HU H, et al. Iron fluoride with excellent cycle performance synthesized by solvothermal method as cathodes for lithium ion batteries. Journal of Power Sources, 2014, 251: 75.
DOI URL |
[8] |
BADWAY F, COSANDEY F, PEREIRA N, et al. Carbon metal fluoride nanocomposites: high-capacity reversible metal fluoride conversion materials as rechargeable positive electrodes for Li batteries. Journal of The Electrochemical Society, 2003, 150(10): A1318.
DOI URL |
[9] |
ZENG C, CHEN F, YE Q, et al. Facile preparation of hierarchical micro-nano FeF3·0.33H2O by a one-pot method with dual surfactants. Nanotechnology, 2021, 32(15): 155402.
DOI |
[10] |
LIN J, CHEN S, ZHU L, et al. Soft-template fabrication of hierarchical nanoparticle iron fluoride as high-capacity cathode materials for Li-ion batteries. Electrochimica Acta, 2020, 364: 137293.
DOI URL |
[11] |
SHI Q, ZHOU Y, CHENG J, et al. Turning carbon black into hollow carbon nanospheres to encapsulate Fe2O3 as high-performance lithium-ion batteries anode. Microporous and Mesoporous Materials, 2022, 332: 111681.
DOI URL |
[12] |
CHEN S, LIN J, SHI Q, et al. Nanoscale iron fluoride supported by three-dimensional porous graphene as long-life cathodes for lithium-ion batteries. Journal of The Electrochemical Society, 2020, 167: 080506.
DOI URL |
[13] | ZHOU Y, CHENG J, WU X, et al. Octahedral FeF3·0.33H2O nanocrystalline fixed on carbon fibers as the cathode of lithium-ion battery based on the “gravel and glue” strategy. Elecchimica Acta, 2022, 435: 141363. |
[14] |
WANG Y, XIE K, ZHU Y, et al. Prussian blue microcubes-derived FeF3 cathodes for high-energy and ultra-stable lithium and lithium- ion batteries. Journal of Power Sources, 2023, 577: 233234.
DOI URL |
[15] |
ZHANG L, YU L, LI O L, et al. FeF3·0.33H2O@carbon nanosheets with honeycomb architectures for high-capacity lithium-ion cathode storage by enhanced pseudocapacitance. Journal of Materials Chemistry A, 2021, 9(30): 16370.
DOI URL |
[16] |
CHEN S, SHI Q, LIN J, et al. Growth behavior and influence factors of three-dimensional hierarchical flower-like FeF3·0.33H2O. CrystEngComm, 2020, 22(33): 5550.
DOI URL |
[17] |
ZHOU H, SUN H, WANG T, et al. Low temperature nanotailoring of hydrated compound by alcohols: FeF3·3H2O as an example. preparation of nanosized FeF3·0.33H2O cathode material for Li-ion batteries. Inorganic Chemistry, 2019, 58: 6765.
DOI URL |
[18] | MURATA Y, MINAMI R, TAKADA S, et al. A fundamental study on carbon composites of FeF3·0.33H2O as open-framework cathode materials for calcium-ion batteries. AIP Conference Proceedings, 2017, 1807: 020005. |
[19] |
PACHFULE P, SHINDE D, MAJUMDER M, et al. Fabrication of carbon nanorods and graphene nanoribbons from a metal-organic framework. Nature Chemistry, 2016, 8(7): 718.
DOI PMID |
[20] |
WANG J, HU Q, HU W, et al. Preparation of hollow core-shell Fe3O4/nitrogen-doped carbon nanocomposites for lithium-ion batteries. Molecules, 2022, 27(2): 396.
DOI URL |
[21] |
YANG F, GAO H, HAO J, et al. Yolk-shell structured FeP@C nanoboxes as advanced anode materials for rechargeable lithium-/potassium-ion batteries. Advanced Functional Materials, 2019, 29(16): 1808291.
DOI URL |
[22] |
LIAN P, ZHU X, LIANG S, et al. High reversible capacity of SnO2/graphene nanocomposite as an anode material for lithium-ion batteries. Electrochimica Acta, 2011, 56(12): 4532.
DOI URL |
[23] |
MANTIA F L, HUGGINS R A, CUI Y. Oxidation processes on conducting carbon additives for lithium-ion batteries. Journal of Applied Electrochemistry, 2013, 43: 1.
DOI URL |
[24] |
LI J, FU L, ZHU J, et al. Improved electrochemical performance of FeF3 by inlaying in a nitrogen-doped carbon matrix. ChemElectroChem, 2019, 6(20): 5203.
DOI URL |
[25] | QIU D, FU L, ZHAN C, et al. Seeding iron trifluoride nanoparticles on reduced graphite oxide for lithium-ion batteries with enhanced loading and stability. ACS Applied Materials & Interfaces, 2018, 10(35): 29505. |
[1] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[2] | 胡梦菲, 黄丽萍, 李贺, 张国军, 吴厚政. 锂/钠离子电池硬碳负极材料的研究进展[J]. 无机材料学报, 2024, 39(1): 32-44. |
[3] | 苏楠, 邱介山, 王治宇. 高容量氟掺杂碳包覆纳米硅负极材料: 气相氟化法制备及其储锂性能[J]. 无机材料学报, 2023, 38(8): 947-953. |
[4] | 杨卓, 卢勇, 赵庆, 陈军. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报, 2023, 38(6): 589-605. |
[5] | 宿拿拿, 韩静茹, 郭印毫, 王晨宇, 石文华, 吴亮, 胡执一, 刘婧, 李昱, 苏宝连. 基于ZIF-8的三维网络硅碳复合材料锂离子电池性能研究[J]. 无机材料学报, 2022, 37(9): 1016-1022. |
[6] | 王洋, 范广新, 刘培, 尹金佩, 刘宝忠, 朱林剑, 罗成果. 钾离子掺杂提高锂离子电池正极锰酸锂性能的微观机制[J]. 无机材料学报, 2022, 37(9): 1023-1029. |
[7] | 朱河圳, 王选朋, 韩康, 杨晨, 万睿哲, 吴黎明, 麦立强. 超高镍LiNi0.91Co0.06Al0.03O2@Ca3(PO4)2正极材料的储锂稳定性的提升机制[J]. 无机材料学报, 2022, 37(9): 1030-1036. |
[8] | 冯锟, 朱勇, 张凯强, 陈长, 刘宇, 高彦峰. 勃姆石纳米片增强锂离子电池隔膜性能研究[J]. 无机材料学报, 2022, 37(9): 1009-1015. |
[9] | 陈莹, 栾伟玲, 陈浩峰, 朱轩辰. 基于应力场的锂离子电池正极多尺度失效研究[J]. 无机材料学报, 2022, 37(8): 918-924. |
[10] | 江依义, 沈旻, 宋半夏, 李南, 丁祥欢, 郭乐毅, 马国强. 双功能电解液添加剂对锂离子电池高温高电压性能的影响[J]. 无机材料学报, 2022, 37(7): 710-716. |
[11] | 苏东良, 崔锦, 翟朋博, 郭向欣. 石榴石型Li6.4La3Zr1.4Ta0.6O12对Si/C负极表面固体电解质中间相的调控机制研究[J]. 无机材料学报, 2022, 37(7): 802-808. |
[12] | 肖美霞, 李苗苗, 宋二红, 宋海洋, 李钊, 毕佳颖. 表面端基卤化Ti3C2 MXene应用于锂离子电池高容量电极材料的研究[J]. 无机材料学报, 2022, 37(6): 660-668. |
[13] | 王禹桐, 张非凡, 许乃才, 王春霞, 崔立山, 黄国勇. 水系锂离子电池负极材料LiTi2(PO4)3的研究进展[J]. 无机材料学报, 2022, 37(5): 481-492. |
[14] | 李昆儒, 胡省辉, 张正富, 郭玉忠, 黄瑞安. 源于溪木贼的高性能锂离子电池三维多孔生物质硅/碳复合负极材料[J]. 无机材料学报, 2021, 36(9): 929-935. |
[15] | 王影, 张文龙, 邢彦锋, 曹苏群, 戴新义, 李晶泽. 非晶态磷酸锂包覆钛酸锂电极在0.01~3.00 V电压范围的性能研究[J]. 无机材料学报, 2021, 36(9): 999-1005. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||