无机材料学报 ›› 2023, Vol. 38 ›› Issue (12): 1387-1395.DOI: 10.15541/jim20230098 CSTR: 32189.14.10.15541/jim20230098
所属专题: 【能源环境】钙钛矿(202506); 【能源环境】太阳能电池(202506)
        
               		马婷婷1,2( ), 汪志鹏1,2, 张梅1,2, 郭敏1,2(
), 汪志鹏1,2, 张梅1,2, 郭敏1,2( )
)
                  
        
        
        
        
    
收稿日期:2023-02-27
									
				
											修回日期:2023-06-21
									
				
									
				
											出版日期:2023-06-28
									
				
											网络出版日期:2023-06-28
									
			通讯作者:
					郭 敏, 教授. E-mail: guomin@ustb.edu.cn作者简介:马婷婷(1997-), 女, 硕士研究生. E-mail: matingting202202@163.com
				
							基金资助:
        
               		MA Tingting1,2( ), WANG Zhipeng1,2, ZHANG Mei1,2, GUO Min1,2(
), WANG Zhipeng1,2, ZHANG Mei1,2, GUO Min1,2( )
)
			  
			
			
			
                
        
    
Received:2023-02-27
									
				
											Revised:2023-06-21
									
				
									
				
											Published:2023-06-28
									
				
											Online:2023-06-28
									
			Contact:
					GUO Min, professor. E-mail: guomin@ustb.edu.cnAbout author:MA Tingting (1997-), female, Master candidate. E-mail: matingting202202@163.com				
							Supported by:摘要:
钙钛矿太阳能电池(PSCs)发展迅速, 其能量转换效率(PCE)被一再刷新, 但长期稳定性还有待提高。目前大部分高效率钙钛矿太阳能电池在惰性气体环境中完成制备, 成本高且操作空间有限, 不利于产业化应用。本研究成功在空气中制备了具有超长稳定性的混合阳离子钙钛矿太阳能电池, 系统探究了A位阳离子掺杂对钙钛矿微观结构、光电性能以及稳定性的影响。实验结果表明, 掺杂FA+和Cs+可以提高钙钛矿薄膜质量, 优化钙钛矿/SnO2的能级排列, 抑制载流子复合, 显著提高器件的光电转换效率、长期以及湿热稳定性。Cs0.05MA0.35FA0.6PbI3电池的最佳PCE为19.34%, 在(20±5) ℃, 相对湿度<5%的黑暗环境中放置242 d后, 仍保持初始效率的85%。MAPbI3电池在同样测试条件下放置112 d后, 效率下降为初始值的30%。掺杂FA+和Cs+也显著提高了电池的抗热和抗湿性。Cs0.05MA0.35FA0.6PbI3电池分别在(85±5) ℃、相对湿度20%~30%和(20±5) ℃、相对湿度80%~90%的黑暗环境中放置96 h后, PCE分别为初始值的99%和84%, 而MAPbI3在同样条件下的PCE仅为初始值的70%和56%。本研究为在空气环境制备高效、超长稳定的混合阳离子钙钛矿太阳能电池提供了参考。
中图分类号:
马婷婷, 汪志鹏, 张梅, 郭敏. 超长稳定的混合阳离子钙钛矿太阳能电池性能优化研究[J]. 无机材料学报, 2023, 38(12): 1387-1395.
MA Tingting, WANG Zhipeng, ZHANG Mei, GUO Min. Performance Optimization of Ultra-long Stable Mixed Cation Perovskite Solar Cells[J]. Journal of Inorganic Materials, 2023, 38(12): 1387-1395.
 
																													图2 不同样品的晶体结构和微观形貌
Fig. 2 Crystal structures and morphologies of different samples (a) XRD patterns; (b) Locally magnified XRD patterns in the range of 2θ=12.8°-15°; (c, e, g) SEM images and (d, f, h) Statistical distributions of grain diameter for (c, d) MP, (e, f) MFP, and (g, h) CMFP
 
																													图3 PSCs的光电性能
Fig. 3 Photovoltaic performances of PSCs Statistical diagram of (a) PCE, (b) Jsc, (c) Voc, and (d) FF; (e) J-V curves; (f) EQE spectra. Colorful figures are available on website
| Sample | Jsc /(mA•cm-2) | Voc/V | FF | PCE/% | PCEmax/% | 
|---|---|---|---|---|---|
| MP | 21.32±0.99 | 0.95±0.03 | 0.74±0.02 | 15.11±0.86 | 16.31 | 
| MFP | 22.94±0.98 | 0.99±0.04 | 0.76±0.03 | 17.18±0.61 | 18.87 | 
| CMFP | 22.24±0.77 | 1.03±0.03 | 0.78±0.02 | 17.83±0.33 | 19.34 | 
表1 三种钙钛矿太阳能电池的光电性能参数
Table 1 Photovoltaic parameters of three types of perovskite solar cells
| Sample | Jsc /(mA•cm-2) | Voc/V | FF | PCE/% | PCEmax/% | 
|---|---|---|---|---|---|
| MP | 21.32±0.99 | 0.95±0.03 | 0.74±0.02 | 15.11±0.86 | 16.31 | 
| MFP | 22.94±0.98 | 0.99±0.04 | 0.76±0.03 | 17.18±0.61 | 18.87 | 
| CMFP | 22.24±0.77 | 1.03±0.03 | 0.78±0.02 | 17.83±0.33 | 19.34 | 
 
																													图4 三种钙钛矿薄膜的光电特性和能级结构
Fig. 4 Photoelectric properties and energy levels of three perovskite films (a) UV-Vis absorption spectra; (b) Tauc plots; (c) PL and (d) TRPL spectra excited from the perovskite layer;(e) Energy level schematics of three samples
 
																													图5 PSCs的界面传输和载流子复合特性
Fig. 5 Interface transmission and carrier recombination characteristics of PSCs (a) PL and (b) TRPL spectra excited from FTO layer; (c) Dark-state EIS profiles of the device at 0.8 Vbias with inset showing an equivalent circuit diagram
 
																													图6 三种钙钛矿太阳能电池在(20±5) ℃, 相对湿度<5%, 黑暗条件下的长期稳定性
Fig. 6 Long-term stabilities of three perovskite solar cells at (20±5) ℃, relative humidity <5% in the dark
 
																													图7 (a) MP、(b) MFP、(c) CMFP钙钛矿太阳能电池在(20±5) ℃, 相对湿度<5%条件下老化前后的暗态EIS图谱
Fig. 7 Dark state EIS profiles of (a) MP, (b) MFP, (c) CMFP PSCs before and after aging at (20±5) ℃ and relative humidity<5%
 
																													图S1 三种钙钛矿薄膜的UPS图谱
Fig. S1 UPS profiles of three perovskite films (a) UPS full spectra; UPS spectra corresponding to the secondary electron cutoff region for (b) MP, (c) MFP, (d) CMFP;(e) UPS valence band spectra; UPS spectra of the valence band top region with respect to the Femi level for (f) MP, (g) MFP, (h) CMFP
 
																													图S2 在85 ℃, 相对湿度20%~30%条件下, 三种钙钛矿薄膜随时间变化的XRD图谱
Fig. S2 XRD patterns of three perovskite thin films over time at 85 ℃, 20%-30% RH (a) MP; (b) MFP; (c) CMFP
 
																													图S3 在(20±5) ℃, 相对湿度80%~90%条件下三种钙钛矿薄膜随时间变化的XRD图谱
Fig. S3 XRD patterns of three perovskite thin films over time at (20±5) ℃, 80%-90% RH (a) MP; (b) MFP; (c) CMFP
| Sample | Jsc /(mA•cm-2) | Voc/V | FF | PCEmax/% | Intergrated current density/(mA•cm-2) | 
|---|---|---|---|---|---|
| MP | 22.87 | 0.97 | 0.74 | 16.34 | 21.87 | 
| MFP | 23.48 | 1.05 | 0.76 | 18.66 | 22.71 | 
| CMFP | 23.30 | 1.06 | 0.78 | 19.34 | 22.37 | 
表S1 三种性能最佳的PSCs的性能参数(图3(e)和图S1)
Table S1 Performance parameters of three best performing PSCs (Fig. 3 (e) and Fig. S1)
| Sample | Jsc /(mA•cm-2) | Voc/V | FF | PCEmax/% | Intergrated current density/(mA•cm-2) | 
|---|---|---|---|---|---|
| MP | 22.87 | 0.97 | 0.74 | 16.34 | 21.87 | 
| MFP | 23.48 | 1.05 | 0.76 | 18.66 | 22.71 | 
| CMFP | 23.30 | 1.06 | 0.78 | 19.34 | 22.37 | 
| Sample | τ1/ns | τ2/ns | B1 | B2 | τmean/ns | 
|---|---|---|---|---|---|
| MP | 33.64 | 96.21 | 0.45 | 0.55 | 68.05 | 
| MFP | 31.70 | 81.41 | 0.68 | 0.32 | 47.61 | 
| CMFP | 26.51 | 77.12 | 0.22 | 0.78 | 65.99 | 
表S2 从钙钛矿一侧激发瞬态光谱(图4(d))的拟合结果
Table S2 Fitting results of transient spectra (Fig. 4(d)) excited from the perovskite side
| Sample | τ1/ns | τ2/ns | B1 | B2 | τmean/ns | 
|---|---|---|---|---|---|
| MP | 33.64 | 96.21 | 0.45 | 0.55 | 68.05 | 
| MFP | 31.70 | 81.41 | 0.68 | 0.32 | 47.61 | 
| CMFP | 26.51 | 77.12 | 0.22 | 0.78 | 65.99 | 
| Sample | Ф/eV | EVB/eV | Eg/eV | ECB/eV | |
|---|---|---|---|---|---|
| MP | 3.74 | 1.59 | -5.33 | 1.61 | -3.72 | 
| MFP | 4.02 | 1.49 | -5.51 | 1.55 | -3.96 | 
| CMFP | 3.93 | 1.47 | -5.40 | 1.55 | -3.85 | 
表S3 由 UPS图谱(图S1)计算得到的三种钙钛矿薄膜的EVB和ECB
Table S3 EVB and ECB of three perovskite films calculated from UPS profiles (Fig. S1)
| Sample | Ф/eV | EVB/eV | Eg/eV | ECB/eV | |
|---|---|---|---|---|---|
| MP | 3.74 | 1.59 | -5.33 | 1.61 | -3.72 | 
| MFP | 4.02 | 1.49 | -5.51 | 1.55 | -3.96 | 
| CMFP | 3.93 | 1.47 | -5.40 | 1.55 | -3.85 | 
| Sample | ||||
|---|---|---|---|---|
| MP | 75.22 | 422.18 | 0.47 | 0.53 | 
| MFP | 35.4 | 21.42 | 0.38 | 0.62 | 
| CMFP | 8.21 | 34.52 | 0.76 | 0.24 | 
表S4 从FTO一侧激发瞬态光谱(图5(b))的拟合结果
Table S4 Fitting results of transient spectra (Fig. 5(b)) excited from the FTO side
| Sample | ||||
|---|---|---|---|---|
| MP | 75.22 | 422.18 | 0.47 | 0.53 | 
| MFP | 35.4 | 21.42 | 0.38 | 0.62 | 
| CMFP | 8.21 | 34.52 | 0.76 | 0.24 | 
| Long-term stability | Rs/(Ω·cm2) | Rrec/(Ω·cm2) | Rnrec | |
|---|---|---|---|---|
| Before testing | MP | 32.40 | 4932 | — | 
| MFP | 27.18 | 7261 | — | |
| CMFP | 21.84 | 10890 | — | |
| After testing | MP | 47.99 | 1462 | 0.30 | 
| MFP | 39.88 | 5430 | 0.75 | |
| CMFP | 34.16 | 9173 | 0.84 | |
表S5 EIS(图7)数据的拟合结果
Table S5 Fitting results of EIS (Fig. 7) data
| Long-term stability | Rs/(Ω·cm2) | Rrec/(Ω·cm2) | Rnrec | |
|---|---|---|---|---|
| Before testing | MP | 32.40 | 4932 | — | 
| MFP | 27.18 | 7261 | — | |
| CMFP | 21.84 | 10890 | — | |
| After testing | MP | 47.99 | 1462 | 0.30 | 
| MFP | 39.88 | 5430 | 0.75 | |
| CMFP | 34.16 | 9173 | 0.84 | |
| Sample | FFn | Vnoc | Jnsc | PCEn | 
|---|---|---|---|---|
| MP | 0.54 | 0.85 | 0.63 | 0.30 | 
| MFP | 0.90 | 0.94 | 0.92 | 0.81 | 
| CMFP | 0.88 | 0.96 | 0.90 | 0.85 | 
表S6 三种PSCs经长期稳定性测试后的J-V相对参数值
Table S6 Relative J-V values of three PSCs after long-term stability testing
| Sample | FFn | Vnoc | Jnsc | PCEn | 
|---|---|---|---|---|
| MP | 0.54 | 0.85 | 0.63 | 0.30 | 
| MFP | 0.90 | 0.94 | 0.92 | 0.81 | 
| CMFP | 0.88 | 0.96 | 0.90 | 0.85 | 
| Sample | FFn | Vnoc | Jnsc | PCEn | 
|---|---|---|---|---|
| MP | 0.81 | 0.89 | 0.87 | 0.70 | 
| MFP | 0.94 | 0.94 | 0.92 | 0.93 | 
| CMFP | 0.95 | 0.96 | 0.95 | 0.99 | 
表S7 三种PSCs经热稳定性测试后的J-V相对数值
Table S7 Relative J-V values of three PSCs after thermal stability testing
| Sample | FFn | Vnoc | Jnsc | PCEn | 
|---|---|---|---|---|
| MP | 0.81 | 0.89 | 0.87 | 0.70 | 
| MFP | 0.94 | 0.94 | 0.92 | 0.93 | 
| CMFP | 0.95 | 0.96 | 0.95 | 0.99 | 
| Sample | FFn | Vnoc | Jnsc | PCEn | 
|---|---|---|---|---|
| MP | 0.72 | 0.86 | 0.88 | 0.56 | 
| MFP | 0.89 | 0.92 | 0.90 | 0.78 | 
| CMFP | 0.91 | 0.96 | 0.92 | 0.84 | 
表S8 三种PSCs经湿稳定性测试后的J-V相对数值
Table S8 Relative J-V values of three PSCs after wet stability testing
| Sample | FFn | Vnoc | Jnsc | PCEn | 
|---|---|---|---|---|
| MP | 0.72 | 0.86 | 0.88 | 0.56 | 
| MFP | 0.89 | 0.92 | 0.90 | 0.78 | 
| CMFP | 0.91 | 0.96 | 0.92 | 0.84 | 
| [1] | HUSSAIN A, ARIF S M, ASLAM M. Emerging renewable and sustainable energy technologies: state of the art. Renewable and Sustainable Energy Reviews, 2017, 71: 12. | 
| [2] | AKIHIRO K, KENJIRO T, YASUO S, et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009,  131(17): 6050. DOI PMID | 
| [3] | MEI A, LI X, LIU L, et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 2014,  345(6194): 295. DOI PMID | 
| [4] | LEIJTENS T, BUSH K A, PRASANNA R, et al.  Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nature Energy, 2018,  3(10): 828. DOI | 
| [5] | JIN Y K, LEE J W, JUNG H S, et al.  High-efficiency perovskite solar cells. Chemical Reviews, 2020,  120(15): 7867. DOI PMID | 
| [6] | VALADI K, GHARIBI S, TAHERI-LEDARI R, et al.  Metal oxide electron transport materials for perovskite solar cells: a review. Environmental Chemistry Letters, 2021,  19(3): 2185. DOI | 
| [7] | AVA T T, MAMUN A A, MARSILLAC S, et al.  A review: thermal stability of methylammonium lead halide based perovskite solar cells. Applied Sciences, 2019,  9(1): 188. DOI URL | 
| [8] | ZHANG C, WANG Y, LIN X, et al.  Effects of A site doping on the crystallization of perovskite films. Journal of Materials Chemistry A, 2021,  9(3): 1372. DOI URL | 
| [9] | GONG J, GUO P, BENJAMIN S E, et al.  Cation engineering on lead iodide perovskites for stable and high-performance photovoltaic applications. Journal of Energy Chemistry, 2018,  27(4): 1017. DOI | 
| [10] | KNIGHT A J, BORCHERT J, OLIVER R D J, et al.  Halide segregation in mixed-halide perovskites: influence of A-site cations. ACS Energy Letters, 2021,  6(2): 799. DOI PMID | 
| [11] | YANG Y, GAO J, CUI J R, et al.  Research progress of perovskite solar cells. Journal of Inorganic Materials, 2015,  30(11): 1131. DOI URL | 
| [12] | CHU Z Y, LI G L, JIANG Z H, et al.  Recent progress in high- quality perovskite CH3NH3PbI3 single crystal. Journal of Inorganic Materials, 2018,  33(10): 1035. DOI URL | 
| [13] | WELLER M T, WEBER O J, CHARLES B. Phase behaviour and composition in the formamidinium-methylammonium hybrid lead iodide perovskite solid solution. Journal of Materials Chemistry A, 2016,  4(40): 15375. DOI URL | 
| [14] | YIN W J, YANG J H, KANG J, et al.  Halide perovskite materials for solar cells: a theoretical review. Journal of Materials Chemistry A, 2015,  3(17): 8926. DOI URL | 
| [15] | CONINGS B, DRIJKONINGEN J, GAUQUELIN N, et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Advanced Energy Materials, 2015,  5(15): 1500477. DOI URL | 
| [16] | LU H, LIU Y, AHLAWAT P, et al. Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science, 2020, 370(6512): 74. | 
| [17] | EPERON G E, STRANKS S D, MENELAOU C, et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science, 2014, 7(3): 982. | 
| [18] | YU B, SHI J, TAN S, et al.  Efficient (>20%) and stable all- inorganic cesium lead triiodide solar cell enabled by thiocyanate molten salts. Angewandte Chemie International Edition, 2021,  60(24): 13436. DOI URL | 
| [19] | PELLET N, GAO P, GREGORI G, et al.  Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angewandte Chemie International Edition, 2014,  53(12): 3151. DOI URL | 
| [20] | JASON J, GABKYUNG, CHUA R M, et al.  Efficient perovskite solar cells via improved carrier management. Nature, 2021,  590(7847): 587. DOI | 
| [21] | SALIBA M, MATSUI T, SEO J Y, et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy & Environmental Science, 2016, 9(6): 1989. | 
| [22] | SUSANA R, FRANCISCO I J, DIEGO B, et al.  Insight into the role of guanidinium and cesium in triple cation lead halide perovskites. Solar RRL, 2021,  5(12): 2100586. DOI URL | 
| [23] | WANG Z, LI R, HUO X. Effcient and stable TiO2 nanorod array structured perovskite solar cells in air: co-passivation and synergistic mechanism. Ceramics International, 2022,  48(12): 17950. DOI URL | 
| [24] | LEE J W, SEOL D J, CHO A N, et al.  High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2PbI3. Advanced Materials, 2014,  26(29): 4991. DOI URL | 
| [25] | KOH T M, FU K, FANG Y, et al.  Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells. Journal of Physical Chemistry C, 2014.  118(30): 16458. DOI URL | 
| [26] | GUO M, ZHANG M, LI R, et al.  Nb2O5 coating on the performance of flexible dye sensitized solar cell based on TiO2 nanoarrays/upconversion luminescence composite structure. Journal of Inorganic Materials, 2019,  34(6): 590. DOI URL | 
| [27] | HAGFELDT A, GRAETZEL M. Light-induced redox reactions in nanocrystalline systems. Chemical Reviews, 1995,  95(1): 49. DOI URL | 
| [28] | BI D, YI C, LUO J, et al.  Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nature Energy, 2016,  1(10): 16142. DOI | 
| [1] | 肖梓晨, 何世豪, 邱诚远, 邓攀, 张威, 戴维德仁, 缑炎卓, 李金华, 尤俊, 王贤保, 林俍佑. 钙钛矿太阳能电池纳米纤维改性电子传输层研究[J]. 无机材料学报, 2024, 39(7): 828-834. | 
| [2] | 陈甜, 罗媛, 朱刘, 郭学益, 杨英. 有机-无机共添加增强柔性钙钛矿太阳能电池机械弯曲及环境稳定性能[J]. 无机材料学报, 2024, 39(5): 477-484. | 
| [3] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. | 
| [4] | 于嫚, 高荣耀, 秦玉军, 艾希成. 上转换发光纳米材料对钙钛矿太阳能电池迟滞效应和离子迁移动力学的影响[J]. 无机材料学报, 2024, 39(4): 359-366. | 
| [5] | 刘锁兰, 栾福园, 吴子华, 寿春晖, 谢华清, 杨松旺. 原位生长钙钛矿太阳能电池共形氧化锡薄膜[J]. 无机材料学报, 2024, 39(12): 1397-1403. | 
| [6] | 周泽铸, 梁子辉, 李静, 吴聪聪. 基于挥发性溶剂制备MAPbI3钙钛矿太阳能电池/模组[J]. 无机材料学报, 2024, 39(11): 1197-1204. | 
| [7] | 厉佥元, 李纪伟, 张钰涵, 刘焱康, 孟阳, 储余, 朱一佳, 徐诺言, 朱亮, 张传香, 陶海军. PbTiO3修饰和极化处理提升钙钛矿太阳能电池性能[J]. 无机材料学报, 2024, 39(11): 1205-1211. | 
| [8] | 陈雨, 林埔安, 蔡冰, 张文华. 钙钛矿太阳能电池无机空穴传输材料的研究进展[J]. 无机材料学报, 2023, 38(9): 991-1004. | 
| [9] | 丁统顺, 丰平, 孙学文, 单沪生, 李琪, 宋健. Fmoc-FF-OH钝化钙钛矿薄膜及其太阳能电池性能研究[J]. 无机材料学报, 2023, 38(9): 1076-1082. | 
| [10] | 方万丽, 沈黎丽, 李海艳, 陈薪羽, 陈宗琦, 寿春晖, 赵斌, 杨松旺. NiOx介孔层的成膜过程对碳电极钙钛矿太阳能电池性能的影响[J]. 无机材料学报, 2023, 38(9): 1103-1109. | 
| [11] | 韩旭, 姚恒大, 吕梅, 陆红波, 朱俊. 单分子液晶添加剂在甲脒铅碘钙钛矿太阳能电池中的应用[J]. 无机材料学报, 2023, 38(9): 1097-1102. | 
| [12] | 张万文, 罗建强, 刘淑娟, 马建国, 张小平, 杨松旺. 氧化锆间隔层的低温喷涂制备及其三层结构钙钛矿太阳能电池应用性能[J]. 无机材料学报, 2023, 38(2): 213-218. | 
| [13] | 王烨, 焦忆楠, 郭军霞, 刘欢, 李睿, 尚子璇, 张士东, 王永浩, 耿海川, 侯登录, 赵晋津. 钙钛矿太阳能电池界面工程优化研究[J]. 无机材料学报, 2023, 38(11): 1323-1330. | 
| [14] | 杨新月, 董庆顺, 赵伟冬, 史彦涛. 基于对氯苄胺的2D/3D钙钛矿太阳能电池[J]. 无机材料学报, 2022, 37(1): 72-78. | 
| [15] | 王艳香, 高培养, 范学运, 李家科, 郭平春, 黄丽群, 孙健. SnO2退火温度对钙钛矿太阳能电池性能的影响[J]. 无机材料学报, 2021, 36(2): 168-174. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||