Journal of Inorganic Materials ›› 2015, Vol. 30 ›› Issue (11): 1131-1138.DOI: 10.15541/jim20150214
• Orginal Article • Previous Articles Next Articles
YANG Ying, GAO Jing, CUI Jia-Rui, GUO Xue-Yi
Received:
2015-05-06
Revised:
2015-07-06
Published:
2015-11-20
Online:
2015-10-20
About author:
YANG Ying. E-mail: muyicaoyang@csu.edu.cn
Supported by:
CLC Number:
YANG Ying, GAO Jing, CUI Jia-Rui, GUO Xue-Yi. Research Progress of Perovskite Solar Cells[J]. Journal of Inorganic Materials, 2015, 30(11): 1131-1138.
Perovskite light absorber | Compact nanocrystalline layer | Hole transport layer | Counter electrode | η/% | Reference |
---|---|---|---|---|---|
CH3NH3PbI3 | TiO2 | P3HT | Au | 4.24 | [20] |
CH3NH3PbI3 | TiO2 | D-π-A conjugated copolymer P | Au | 6.64 | [20] |
CH3NH3PbI3 | TiO2 | - | Pt | 6.54 | [21] |
CH3NH3PbI3 | TiO2 | PFF | Au | 9.40 | [23] |
CH3NH3PbI3 | TiO2 | spiro-OMeTAD | Au | 15.0 | [3] |
CH3NH3PbI2Cl | TiO2+Al2O3 | spiro-OMeTAD | Ag | 12.3 | [26] |
CH3NH3PbI3-xClx | TiO2 | P3HT | Au | 9.2 | [25] |
CH3NH3PbI3-xClx | TiO2 | spiro-OMeTAD | Au | 19.3 | [5] |
CH3NH3Pb(I1-xBrx)3 | TiO2 | PTAA | Au | 12.3 | [30] |
(CH3NH3)0.6(HC(NH2)2)0.4 Pb3 | TiO2 | spiro-OMeTAD | Au | 14.9 | [21] |
Table 1 Photoelectric conversion efficiency of perovskite solar cells with different light absorber materials
Perovskite light absorber | Compact nanocrystalline layer | Hole transport layer | Counter electrode | η/% | Reference |
---|---|---|---|---|---|
CH3NH3PbI3 | TiO2 | P3HT | Au | 4.24 | [20] |
CH3NH3PbI3 | TiO2 | D-π-A conjugated copolymer P | Au | 6.64 | [20] |
CH3NH3PbI3 | TiO2 | - | Pt | 6.54 | [21] |
CH3NH3PbI3 | TiO2 | PFF | Au | 9.40 | [23] |
CH3NH3PbI3 | TiO2 | spiro-OMeTAD | Au | 15.0 | [3] |
CH3NH3PbI2Cl | TiO2+Al2O3 | spiro-OMeTAD | Ag | 12.3 | [26] |
CH3NH3PbI3-xClx | TiO2 | P3HT | Au | 9.2 | [25] |
CH3NH3PbI3-xClx | TiO2 | spiro-OMeTAD | Au | 19.3 | [5] |
CH3NH3Pb(I1-xBrx)3 | TiO2 | PTAA | Au | 12.3 | [30] |
(CH3NH3)0.6(HC(NH2)2)0.4 Pb3 | TiO2 | spiro-OMeTAD | Au | 14.9 | [21] |
Deposition methods | Perovskite photoactive absorber | Processing parameters | η/% | Reference |
---|---|---|---|---|
One-step | CH3NH3PbI3 | CH3NH3PbI3 film: spin at 3000 r/min for 20 s, dried at 40℃ for 3 min and 100℃ for 5 min | 7.5 | [33] |
One-step | CH3NH3PbI2 | CH3NH3PbI3 film: spin at 2000 r/min for 60 s dried at 105℃ for 45 min | 7.2 | [38] |
One-step | CH3NH3PbI3-xClx | CH3NH3I:PbCl2 = 3:1, spin at 2000 r/min for 30 s dried at 90℃ for 60 min and 100℃ for 25 min | 19.3 | [5] |
Two-step | CH3NH3PbI3 | PbI2 film: spin at 2000 r/min for 30 s dried at 110℃ for 15 min CH3NH3I powder is spread on PbI2 film, dried at 150℃ | 12.1 | [34] |
Two-step | CH3NH3PbI3 | PbI2 film: spin at 3000 r/min for 20 s dried at 40℃ for 3 min and 100℃ for 5 min CH3NH3I film: spin at 4000 r/min for 20 s dried at 105℃ for 5 min | 13.9 | [33] |
Dual-source vapor deposition | CH3NH3PbI3-xClx | CH3NH3I:PbCl2 = 3.5:1 CH3NH3I film : dried at 120℃ for 5 min PbCl2 film : dried at 325℃ for 5 min | 15 | [35] |
Table 2 Processing parameters for preparing perovskite photoactive absorber thin film and corresponding photoelectric conversion efficiency
Deposition methods | Perovskite photoactive absorber | Processing parameters | η/% | Reference |
---|---|---|---|---|
One-step | CH3NH3PbI3 | CH3NH3PbI3 film: spin at 3000 r/min for 20 s, dried at 40℃ for 3 min and 100℃ for 5 min | 7.5 | [33] |
One-step | CH3NH3PbI2 | CH3NH3PbI3 film: spin at 2000 r/min for 60 s dried at 105℃ for 45 min | 7.2 | [38] |
One-step | CH3NH3PbI3-xClx | CH3NH3I:PbCl2 = 3:1, spin at 2000 r/min for 30 s dried at 90℃ for 60 min and 100℃ for 25 min | 19.3 | [5] |
Two-step | CH3NH3PbI3 | PbI2 film: spin at 2000 r/min for 30 s dried at 110℃ for 15 min CH3NH3I powder is spread on PbI2 film, dried at 150℃ | 12.1 | [34] |
Two-step | CH3NH3PbI3 | PbI2 film: spin at 3000 r/min for 20 s dried at 40℃ for 3 min and 100℃ for 5 min CH3NH3I film: spin at 4000 r/min for 20 s dried at 105℃ for 5 min | 13.9 | [33] |
Dual-source vapor deposition | CH3NH3PbI3-xClx | CH3NH3I:PbCl2 = 3.5:1 CH3NH3I film : dried at 120℃ for 5 min PbCl2 film : dried at 325℃ for 5 min | 15 | [35] |
Structure of the perovskite solar cell | Hole transport layer | J/(mA·cm-2) | Voc /V | η/% | Reference |
---|---|---|---|---|---|
TCO/TiO2/CH3NH3PbI3-xClx/metal | none | 22.20 | 1.030 | 17.90 | [48] |
FTO/TiO2/CH3NH3PbI3/Au | none | 7.38 | 0.699 | 3.30 | [27] |
FTO/TiO2/CH3NH3PbI3/Al2O3/Au | none | 10.67 | 0.789 | 5.07 | [27] |
FTO/TiO2/ CH3NH3PbI3/Au | none | 17.80 | 0.905 | 10.49 | [53] |
ITO/TiO2/ CH3NH3PbI2Cl/Au | P3HT | 21.30 | 0.900 | 10.80 | [14] |
FTO/TiO2/ CH3NH3PbI3/Au | Spiro-OMeTAD | 16.70 | 0.855 | 8.40 | [44] |
FTO/TiO2/ CH3NH3PbI3/Au | PTAA | 16.50 | 0.997 | 12.00 | [44] |
FTO/TiO2/CH3NH3PbI3-xClx/Au | Spiro-OMeTAD | 12±3 | 0.84±0.03 | 8.60 | [24] |
FTO/TiO2/CH3NH3PbI3-xClx/Au | P3HT | 12±2 | 0.93±0.06 | 9.30 | [32] |
FTO/TiO2/CH3NH3PbI3/Au | CuI | 17.80 | 0.550 | 6.00 | [45] |
FTO/TiO2/CH3NH3PbI3/Au | CuSCN | 19.70 | 1.016 | 12.40 | [46] |
FTO/ CH3NH3PbI3-xClx/Au | Spiro-OMeTAD | 21.97 | 1.060 | 14.14 | [47] |
Table 3 Effect of hole transport materials on perovskite solar cells
Structure of the perovskite solar cell | Hole transport layer | J/(mA·cm-2) | Voc /V | η/% | Reference |
---|---|---|---|---|---|
TCO/TiO2/CH3NH3PbI3-xClx/metal | none | 22.20 | 1.030 | 17.90 | [48] |
FTO/TiO2/CH3NH3PbI3/Au | none | 7.38 | 0.699 | 3.30 | [27] |
FTO/TiO2/CH3NH3PbI3/Al2O3/Au | none | 10.67 | 0.789 | 5.07 | [27] |
FTO/TiO2/ CH3NH3PbI3/Au | none | 17.80 | 0.905 | 10.49 | [53] |
ITO/TiO2/ CH3NH3PbI2Cl/Au | P3HT | 21.30 | 0.900 | 10.80 | [14] |
FTO/TiO2/ CH3NH3PbI3/Au | Spiro-OMeTAD | 16.70 | 0.855 | 8.40 | [44] |
FTO/TiO2/ CH3NH3PbI3/Au | PTAA | 16.50 | 0.997 | 12.00 | [44] |
FTO/TiO2/CH3NH3PbI3-xClx/Au | Spiro-OMeTAD | 12±3 | 0.84±0.03 | 8.60 | [24] |
FTO/TiO2/CH3NH3PbI3-xClx/Au | P3HT | 12±2 | 0.93±0.06 | 9.30 | [32] |
FTO/TiO2/CH3NH3PbI3/Au | CuI | 17.80 | 0.550 | 6.00 | [45] |
FTO/TiO2/CH3NH3PbI3/Au | CuSCN | 19.70 | 1.016 | 12.40 | [46] |
FTO/ CH3NH3PbI3-xClx/Au | Spiro-OMeTAD | 21.97 | 1.060 | 14.14 | [47] |
[1] | KOJIMA A, TESHIMA K, SHIRAI Y, et al.Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.Journal of the American Chemical Society., 2009, 131(17): 6050-6051. |
[2] | LEE M M, TEUSCHER J, MIYASAKA T, et al.Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites.Science., 2012, 338(6107): 643-647. |
[3] | BURSCHKA J, PELLET N, MOON S, et al.Sequential deposition as a route to high-performance perovskite-sensitized solar cells.Nature., 2013, 499(7458): 316-319. |
[4] | COUZIN-FRANKEL J.Breakthrough of the year 2013. cancer immunotherapy.Science, 2013, 342(6165): 1432-1433. |
[5] | ZHOU H, CHEN Q, LI G, et al.Interface engineering of highly efficient perovskite solar cells.Science, 2014, 345(6196): 542-546. |
[6] | YANG W S, NOH J H, JEON N J, et al.High-performance photovoltaic perovskite layers fabricated through intramolecular exchange.Science, 2015, 348(6240): 1234-1237. |
[7] | GREEN M A, HO-BAILLIE A, SNAITH H J.The emergence of perovskite solar cells.Nature Photonics, 2014, 8(7): 506-514. |
[8] | 郑莹莹. 有机/无机杂化钙钛矿结构光电功能材料的研究. 浙江大学博士学位论文, 2007. |
[9] | OUYANG M, BAI R, CHEN L, et al.Highly photoconductive copper phthalocyanine-coated titania nanoarrays via secondary deposition.The Journal of Physical Chemistry C, 2008, 112(30): 11250-11256. |
[10] | STRANKS S D, EPERON G E, GRANCINI G, et al.Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber.Science, 2013, 342(6156): 341-344. |
[11] | YANG Y, WANG W.Effects of incorporating PbS quantum dots in perovskite solar cells based on CH3NH3PbI3.Journal of Power Sources, 2015, 293: 577-584. |
[12] | ETGAR L, GAO P, QIN P, et al.A hybrid lead iodide perovskite and lead sulfide QD heterojunction solar cell to obtain a panchromatic response.Journal of Materials Chemistry A, 2014, 2(30): 11586-11590. |
[13] | HU L, WANG W, LIU H, et al.PbS colloidal quantum dots as an effective hole transporter for planar heterojunction perovskite solar cells.Journal of Materials Chemistry A, 2015, 3(2): 515-518. |
[14] | CONINGS B, BAETEN L, DE DOBBELAERE C, et al.Perovskite‐based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach.Advanced Materials, 2014, 26(13): 2041-2046. |
[15] | ABRUSCI A, STRANKS S D, DOCAMPO P, et al.High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers.Nano Letters, 2013, 13(7): 3124-3128. |
[16] | WANG J T, BALL J M, BAREA E M, et al.Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells.Nano Letters, 2013, 14(2): 724-730. |
[17] | CHEN Q, ZHOU H, HONG Z, et al.Planar heterojunction perovskite solar cells via vapor-assisted solution process.Journal of the American Chemical Society, 2013, 136(2): 622-625. |
[18] | HEO J H, IM S H, NOH J H, et al.Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors.Nature Photonics, 2013, 7(6): 486-491. |
[19] | DOCAMPO P, BALL J M, DARWICH M, et al.Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates.Nature Communications, 2013, 4: 1-6. |
[20] | NAGARJUNA P, NARAYANASWAMY K, SWETHA T, et al.CH3NH3PbI3 perovskite sensitized solar cells using a D-A copolymer as hole transport material.Electrochimica Acta, 2015, 151: 21-26. |
[21] | IM J, LEE C, LEE J, et al.6.5% efficient perovskite quantum-dot-sensitized solar cell.Nanoscale, 2011, 3(10): 4088-4093. |
[22] | KIM H, MORA-SERO I, GONZALEZ-PEDRO V, et al.Mechanism of carrier accumulation in perovskite thin-absorber solar cells.Nature Communications, 2013, 4: 2242-2248. |
[23] | KIM H, LEE J, YANTARA N, et al.High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer.Nano Letters, 2013, 13(6): 2412-2417. |
[24] | DI GIACOMO F, RAZZA S, MATTEOCCI F, et al.High efficiency CH3NH3PbI(3-x)Clx perovskite solar cells with poly(3- hexylthiophene) hole transport layer.Journal of Power Sources, 2014, 251: 152-156. |
[25] | SANCHEZ R S, GONZALEZ-PEDRO V, LEE J, et al.Slow dynamic processes in lead halide perovskite solar cells. characteristic times and hysteresis.The Journal of Physical Chemistry Letters, 2014, 5(13): 2357-2363. |
[26] | BALL J M, LEE M M, HEY A, et al.Low-temperature processed meso-superstructured to thin-film perovskite solar cells.Energy & Environmental Science, 2013, 6(6): 1739-1743. |
[27] | XING G, MATHEWS N, SUN S, et al.Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3.Science, 2013, 342(6156): 344-347. |
[28] | STRANKS S D, EPERON G E, GRANCINI G, et al.Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber.Science, 2013, 342(6156): 341-344. |
[29] | JEON N J, NOH J H, KIM Y C, et al.Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nature Materials, 2014, 13(9): 897-903. |
[30] | NOH J H, IM S H, HEO J H, et al.Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells.Nano Letters, 2013, 13(4): 1764-1769. |
[31] | PELLET N, GAO P, GREGORI G, et al.mixed‐organic‐cation perovskite photovoltaics for enhanced solar light harvesting.Angewandte Chemie International Edition, 2014, 53(12): 3151-3157. |
[32] | RHEE J H, CHUNG C, DIAU E W.A perspective of mesoscopic solar cells based on metal chalcogenide quantum dots and organometal-halide perovskites.NPG Asia Materials, 2013, 5(10): e61-e68. |
[33] | IM J, KIM H, PARK N.Morphology-photovoltaic property correlation in perovskite solar cells: one-step versus two-step deposition of CH3NH3PbI3.APL Materials, 2014, 2(8): 815101-815108. |
[34] | CHEN Q, ZHOU H, HONG Z, et al.Planar heterojunction perovskite solar cells via vapor-assisted solution process.Journal of the American Chemical Society, 2014, 136(2): 622-625. |
[35] | LIU M, JOHNSTON M B, SNAITH H J.Efficient planar heterojunction perovskite solar cells by vapour deposition.Nature, 2013, 501(7467): 395-398. |
[36] | ERA M, HATTORI T, TAIRA T, et al.Self-organized growth of PbI-based layered perovskite quantum well by dual-source vapor deposition.Chemistry of Materials, 1997, 9(1): 8-10. |
[37] | RAMOS F J, LÓPEZ SANTOS M C, GUILLÉN E, et al. Perovskite solar cells based on nanocolumnar plasma-deposited znO thin films.Chem. Phys. Chem., 2014, 15(6): 1148-1153. |
[38] | CARNIE M J, CHARBONNEAU C, DAVIES M L, et al.A one-step low temperature processing route for organolead halide perovskite solar cells.Chemical Communications, 2013, 49(72): 7893-7895. |
[39] | ETGAR L, GAO P, XUE Z, et al.Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells.Journal of the American Chemical Society, 2012, 134(42): 17396-17399. |
[40] | XIAO M, HUANG F, HUANG W, et al.A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells.Angewandte Chemie, 2014, 126(37): 10056-10061. |
[41] | LIANG P W, LIAO C Y, CHUEH C C, et al.Additive enhanced crystallization of solution- processed perovskite for highly efficient planar-heterojunction solar cells.Advanced Materials, 2014, 26(22): 3748-3754. |
[42] | LIANG K, MITZI D B, PRIKAS M T.Synthesis and characterization of organic-inorganic perovskite thin films prepared using a versatile two-step dipping technique.Chemistry of Materials, 1998, 10(1): 403-411. |
[43] | TAKEOKA Y, FUKASAWA M, MATSUI T, et al. Intercalated formation of two-dimensional and multi-layered perovskites in organic thin films. Chemical Communications, 2005(3): 378-380. |
[44] | HEO J H, IM S H, NOH J H, et al.Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors.Nature Photonics, 2013, 7(6): 486-491. |
[45] | CHRISTIANS J A, FUNG R C, KAMAT P V.An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide.Journal of the American Chemical Society, 2013, 136(2): 758-764. |
[46] | QIN P, TANAKA S, ITO S, et al.Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency.Nature Communications, 2014, 5: 3834-3839. |
[47] | KE W J, FANG G J, WAN J W, et al.Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells.Nature Communications, 2015, doi: 10.1038/ncomms7700. |
[48] | MEI A, LI X, LIU L, et al.A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability.Science, 2014, 345(6194): 295-298. |
[49] | MINEMOTO T, MURATA M.Impact of work function of back contact of perovskite solar cells without hole transport material analyzed by device simulation.Current Applied Physics, 2014, 14(11): 1428-1433. |
[50] | DULLWEBER T, LUNDBERG O, MALMSTRÖM J, et al. Back surface band gap gradings in Cu(In,Ga)Se2 solar cells.Thin Solid Films, 2001, 387(1/2): 11-13. |
[51] | BURGELMAN M, NOLLET P, DEGRAVE S. Modelling polycrystalline semiconductor solar cells. Thin Solid Films, 2000, 361-362: 527-532. |
[52] | SHI JIANG-JIAN, DONG WAN, XU YU-ZHUAN, et al. Enhanced Performance in perovskite organic lead iodide heterojunction solar cells with metal-insulator-semiconductor back contact. Chinese Physics Letters, 2013, 30(12): 1284021-1-5. |
[53] | SHI J, DONG J, LV S, et al. Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: high efficiency and junction property. Applied Physics Letters, 2014, 104(6): 639011-1-4. |
[54] | NOH J H, IM S H, HEO J H, et al.Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells.Nano Letters, 2013, 13(4): 1764-1769. |
[55] | LEIJTENS T, EPERON G E, PATHAK S, et al.Overcoming ultraviolet light instability of sensitized TiO2 with meso- superstructured organometal tri-halide perovskite solar cells.Nature Communications, 2013, 4: 2885-2891. |
[56] | SMITH I C, HOKE E T, SOLIS IBARRA D, et al.A layered hybrid perovskite solar‐cell absorber with enhanced moisture stability.Angewandte Chemie, 2014, 126(42): 11414-11417. |
[57] | LI W, DONG H, WANG L, et al.Montmorillonite as bifunctional buffer layer material for hybrid perovskite solar cells with protection from corrosion and retarding recombination.Journal of Materials Chemistry A, 2014, 2(33): 13587-13592. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||