无机材料学报 ›› 2022, Vol. 37 ›› Issue (1): 72-78.DOI: 10.15541/jim20210199 CSTR: 32189.14.10.15541/jim20210199
所属专题: 【信息功能】MAX层状材料、MXene及其他二维材料(202409); 【能源环境】钙钛矿(202409); 【能源环境】太阳能电池(202409)
收稿日期:
2021-03-25
修回日期:
2021-05-27
出版日期:
2022-01-20
网络出版日期:
2021-06-10
通讯作者:
史彦涛, 教授. E-mail: shiyantao@dlut.edu.cn
作者简介:
杨新月(1996-), 女, 硕士研究生. E-mail: yangxinyue@mail.dlut.edu.cn
基金资助:
YANG Xinyue(), DONG Qingshun, ZHAO Weidong, SHI Yantao(
)
Received:
2021-03-25
Revised:
2021-05-27
Published:
2022-01-20
Online:
2021-06-10
Contact:
SHI Yantao, professor. E-mail: shiyantao@dlut.edu.cn
About author:
YANG Xinyue(1996-), female, Master candidate. E-mail: yangxinyue@mail.dlut.edu.cn
Supported by:
摘要:
三维(3D)有机-无机金属卤化物钙钛矿薄膜的表面和晶界处存在大量缺陷, 容易导致载流子的非辐射复合并加快3D钙钛矿分解, 进而影响钙钛矿太阳能电池(PSCs)能量转换效率(PCE)及稳定性。本研究通过引入对氯苄胺阳离子, 与3D钙钛矿薄膜及其表面过剩的碘化铅反应后原位形成了二维(2D)钙钛矿, 实现了对3D钙钛矿薄膜表面和晶界处的缺陷钝化并改善了表面疏水性。基于该策略, 成功制备出具有更高PCE和更好稳定性的2D/3D-PSCs。本工作系统研究了钙钛矿薄膜的结构、形貌和器件的光电特性及稳定性。研究结果表明, 2D/3D-PSCs的PCE高达20.88%, 高于3D-PSCs的18.70%。另外, 2D/3D-PSCs连续工作200 h后(1个太阳光, N2氛围), PCE保持初始值的82%, 展现出优异的稳定性。
中图分类号:
杨新月, 董庆顺, 赵伟冬, 史彦涛. 基于对氯苄胺的2D/3D钙钛矿太阳能电池[J]. 无机材料学报, 2022, 37(1): 72-78.
YANG Xinyue, DONG Qingshun, ZHAO Weidong, SHI Yantao. 4-Chlorobenzylamine-based 2D/3D Perovskite Solar Cells[J]. Journal of Inorganic Materials, 2022, 37(1): 72-78.
图1 (a) 3D钙钛矿薄膜和2D/3D钙钛矿薄膜的XRD图谱, (b) 2D钙钛矿薄膜的XRD图谱
Fig. 1 (a) XRD patterns of 3D and 2D/3D perovskite films, and (b) XRD pattern of 2D perovskite film
图2 入射角度为(a, b)0.1°和(c, d)1°时, (a, c)3D钙钛矿薄膜和(b, d) 2D/3D钙钛矿薄膜的GIWAXS图谱
Fig. 2 GIWAXS patterns of (a, c) 3D and (b, d) 2D/3D perovskite films with incident angles of (a, b) 0.1° and (c, d)1°
图3 (a) 3D钙钛矿薄膜和(b) 2D/3D钙钛矿薄膜的俯视SEM照片, (c) 3D-PSCs和(d) 2D/3D-PSCs的横截面SEM照片
Fig. 3 Top-view SEM images of (a) 3D and (b) 2D/3D perovskite films, cross-sectional SEM images of (c) 3D-PSCs and (d) 2D/3D-PSCs
图4 3D钙钛矿薄膜和2D/3D钙钛矿薄膜的(a)紫外-可见吸收光谱、PL光谱和(b) TRPL衰减曲线
Fig. 4 (a) UV-Vis absorption, PL spectra and (b) TRPL decay curves of 3D and 2D/3D perovskite films
Sample | τ1/ns | A1 | τ2/ns | A2 | τave/ns |
---|---|---|---|---|---|
3D | 2.55 | 0.71 | 17.26 | 0.30 | 13.49 |
2D/3D | 4.75 | 0.53 | 24.86 | 0.43 | 21.02 |
表1 3D及2D/3D钙钛矿薄膜TRPL拟合结果
Table 1 TRPL fitting results of 3D and 2D/3D perovskite films
Sample | τ1/ns | A1 | τ2/ns | A2 | τave/ns |
---|---|---|---|---|---|
3D | 2.55 | 0.71 | 17.26 | 0.30 | 13.49 |
2D/3D | 4.75 | 0.53 | 24.86 | 0.43 | 21.02 |
图5 (a) 2D/3D-PSCs器件结构示意图, 3D-PSCs和2D/3D-PSCs (b)在反向和正向扫描时的J-V曲线, (c) EQE光谱图及相应积分电流密度, (d)在最大功率点处的稳态PCE曲线
Fig. 5 (a) Schematic diagram of 2D/3D-PSCs structure, (b) J-V curves (reverse and forward scans), (c) EQE spectra with the corresponding integrated current densities, and (d) stabilized PCE curves at the maximum power point for 3D-PSCs and 2D/3D-PSCs
Sample | Scan method | VOC/V | JSC/(mA·cm-2) | FF/% | PCE/% |
---|---|---|---|---|---|
3D | Reverse | 1.11 | 23.17 | 72.74 | 18.70 |
Forward | 1.08 | 23.18 | 71.85 | 18.06 | |
2D/3D | Reverse | 1.17 | 23.45 | 76.39 | 20.88 |
Forward | 1.16 | 23.44 | 75.07 | 20.41 |
表2 3D-PSCs及2D/3D-PSCs的光电性能参数
Table 2 Detailed photovoltaic parameters of 3D-PSCs and 2D/3D-PSCs
Sample | Scan method | VOC/V | JSC/(mA·cm-2) | FF/% | PCE/% |
---|---|---|---|---|---|
3D | Reverse | 1.11 | 23.17 | 72.74 | 18.70 |
Forward | 1.08 | 23.18 | 71.85 | 18.06 | |
2D/3D | Reverse | 1.17 | 23.45 | 76.39 | 20.88 |
Forward | 1.16 | 23.44 | 75.07 | 20.41 |
图6 (a) 3D-PSCs和2D/3D-PSCs的热稳定性测试(温度85 ℃, 空气相对湿度为40%~70%), (b) 3D-PSCs和2D/3D-PSCs的光稳定性测试(1个太阳光, N2氛围)
Fig. 6 (a) Thermal stability of 3D-PSCs and 2D/3D-PSCs under 85 ℃ in air (relative humidity: 40%-70%), and (b) light stability of 3D-PSCs and 2D/3D-PSCs under continuous 1 sun illumination in N2 All devices are unencapsulated
图S3 不同浓度4-CBAI溶液处理时(0, 0.5, 1.0和1.5 mg·mL-1), PSCs的PCE统计图
Fig. S3 Statistics of the PCE for PSCs, processed by 4-CBAI treatment with various concentrations of 0, 0.5, 1.0, and 1.5 mg·mL-1
图S5 2D/3D柔性PSCs最大功率点处的稳态PCE和光电流密度曲线
Fig. S5 Stabilized PCE and photocurrent density curves at the maximum power point for the flexible PSCs based on 2D/3D perovskite
[1] | WANG Z, LIN Q, CHMIEL F P, et al. Efficient ambient-air-stable solar cells with 2D-3D heterostructured butylammonium-caesium- formamidinium lead halide perovskites. Nature Energy, 2017, 2(9):1-10. |
[2] |
YIN W J, SHI T, YAN Y. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Advanced Materials, 2014, 26(27):4653-4658.
DOI URL |
[3] |
KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic Cells. Journal of the American Chemical Society, 2009, 131(17):6050-6051.
DOI URL |
[4] | KIM H S, LEE C R, IM J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports, 2012, 2(1):1-7. |
[5] | Best research-cell efficiencies (EB/OL)(2021-11-10). https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.rev211011.pdf |
[6] | LIU Z, CAO F, WANG M, et al. Observing defect passivation of the grain boundary with 2-aminoterephthalic acid for efficient and stable perovskite solar cells. Angewandte Chemie International Edition, 2020, 132(10):4190-4196. |
[7] | LÜ Y SONG X YIN Y, et al. Hexylammonium iodide derived two-dimensional perovskite as interfacial passivation layer in efficient two-dimensional/three-dimensional perovskite solar cells. ACS Applied Materials & Interfaces, 2019, 12(1):698-705. |
[8] | WANG Q, CHEN B, LIU Y, et al. Scaling behavior of moisture- induced grain degradation in polycrystalline hybrid perovskite thin films. Energy & Environmental Science, 2017, 10(2):516-522. |
[9] |
LEE J W, PARK N G. Chemical approaches for stabilizing perovskite solar cells. Advanced Energy Materials, 2020, 10(1):1903249.
DOI URL |
[10] |
BOYD C C, CHEACHAROEN R, LEIJTENS T, et al. Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chemical Reviews, 2019, 119(5):3418-3451.
DOI URL |
[11] |
HU Y, SCHLIPF J, WUSSLER M, et al. Hybrid perovskite/perovskite heterojunction solar cells. ACS Nano, 2016, 10(6):5999-6007.
DOI URL |
[12] |
CHEN P, BAI Y, WANG S, et al. In situ growth of 2D perovskite capping layer for stable and efficient perovskite solar cells. Advanced Functional Materials, 2018, 28(17):1706923.
DOI URL |
[13] |
ZOU Y, CUI Y, WANG H Y, et al. Highly efficient and stable 2D-3D perovskite solar cells fabricated by interfacial modification. Nanotechnology, 2019, 30(27):275202.
DOI URL |
[14] |
HE M, LIANG J, ZHANG Z, et al. Compositional optimization of a 2D-3D heterojunction interface for 22.6% efficient and stable planar perovskite solar cells. Journal of Materials Chemistry A, 2020, 8(48):25831-25841.
DOI URL |
[15] | JIANG Q, ZHANG L, WANG H, et al. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2 PbI3- based perovskite solar cells. Nature Energy, 2016, 2(1):1-7. |
[16] |
CHEN Q, ZHOU H, SONG T B, et al. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Letters, 2014, 14(7):4158-4163
DOI URL |
[17] |
TUMEN-ULZII G, QIN C, KLOTZ D, et al. Detrimental effect of unreacted PbI2 on the long-term stability of perovskite solar cells. Advanced Materials, 2020, 32(16):1905035.
DOI URL |
[18] |
NIU T, LU J, MUNIR R, et al. Stable high-performance perovskite solar cells via grain boundary passivation. Advanced Materials, 2018, 30(16):1706576.
DOI URL |
[19] |
SHERKAR T S, MOMBLONA C, GIL-ESCRIG L, et al. Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions. ACS Energy Letters, 2017, 2(5):1214-1222.
DOI URL |
[20] |
CHEN B, RUDD P N, YANG S, et al. Imperfections and their passivation in halide perovskite solar cells. Chemical Society Reviews, 2019, 48(14):3842-3867.
DOI URL |
[21] |
KOH T M, SHANMUGAM V, GUO X, et al. Enhancing moisture tolerance in efficient hybrid 3D/2D perovskite photovoltaics. Journal of Materials Chemistry A, 2018, 6(5):2122-2128.
DOI URL |
[22] |
ZHANG M, LYU M, YU H, et al. Stable and low-cost mesoscopic CH3NH3PbI2Br perovskite solar cells by using a thin poly (3-hexylthiophene) layer as a hole transporter. Chemistry-A European Journal, 2015, 21(1):434-439.
DOI URL |
[23] |
SI H, LIAO Q, KANG Z, et al. Deciphering the NH4PbI3 intermediate phase for simultaneous improvement on nucleation and crystal growth of perovskite. Advanced Functional Materials, 2017, 27(30):1701804.
DOI URL |
[24] |
ZHANG M, YU H, LYU M, et al. Composition-dependent photoluminescence intensity and prolonged recombination lifetime of perovskite CH3NH3PbBr3-xClx films. Chemical Communications, 2014, 50(79):11727-11730.
DOI URL |
[25] |
SALIBA M, ETGAR L. Current density mismatch in perovskite Solar Cells. ACS Energy Letters, 2020, 5(9):2886-2888.
DOI URL |
[26] |
AKIN S, ARORA N, ZAKEERUDDIN S M, et al. New strategies for defect passivation in high-efficiency perovskite solar cells. Advanced Energy Materials, 2020, 10(13):1903090.
DOI URL |
[1] | 瞿牡静, 张淑兰, 朱梦梦, 丁浩杰, 段嘉欣, 代恒龙, 周国红, 李会利. CsPbBr3@MIL-53纳米复合荧光粉的合成、性能及其白光LEDs应用[J]. 无机材料学报, 2024, 39(9): 1035-1043. |
[2] | 潘建隆, 马官军, 宋乐美, 郇宇, 魏涛. 燃料还原法原位制备高稳定性/催化活性SOFC钴基钙钛矿阳极[J]. 无机材料学报, 2024, 39(8): 911-919. |
[3] | 苗鑫, 闫世强, 韦金豆, 吴超, 樊文浩, 陈少平. Te基热电器件反常界面层生长行为及界面稳定性研究[J]. 无机材料学报, 2024, 39(8): 903-910. |
[4] | 肖梓晨, 何世豪, 邱诚远, 邓攀, 张威, 戴维德仁, 缑炎卓, 李金华, 尤俊, 王贤保, 林俍佑. 钙钛矿太阳能电池纳米纤维改性电子传输层研究[J]. 无机材料学报, 2024, 39(7): 828-834. |
[5] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[6] | 陈甜, 罗媛, 朱刘, 郭学益, 杨英. 有机-无机共添加增强柔性钙钛矿太阳能电池机械弯曲及环境稳定性能[J]. 无机材料学报, 2024, 39(5): 477-484. |
[7] | 杨博, 吕功煊, 马建泰. 镍铁氢氧化物-磷化钴复合电极电催化分解水研究[J]. 无机材料学报, 2024, 39(4): 374-382. |
[8] | 于嫚, 高荣耀, 秦玉军, 艾希成. 上转换发光纳米材料对钙钛矿太阳能电池迟滞效应和离子迁移动力学的影响[J]. 无机材料学报, 2024, 39(4): 359-366. |
[9] | 张宇晨, 陆知遥, 赫晓东, 宋广平, 朱春城, 郑永挺, 柏跃磊. 硫族MAX相硼化物的物相稳定性和性能预测[J]. 无机材料学报, 2024, 39(2): 225-232. |
[10] | 周泽铸, 梁子辉, 李静, 吴聪聪. 基于挥发性溶剂制备MAPbI3钙钛矿太阳能电池/模组[J]. 无机材料学报, 2024, 39(11): 1197-1204. |
[11] | 厉佥元, 李纪伟, 张钰涵, 刘焱康, 孟阳, 储余, 朱一佳, 徐诺言, 朱亮, 张传香, 陶海军. PbTiO3修饰和极化处理提升钙钛矿太阳能电池性能[J]. 无机材料学报, 2024, 39(11): 1205-1211. |
[12] | 周云凯, 刁亚琪, 王明磊, 张宴会, 王利民. 聚苯胺改性Ti3C2(OH)2抗氧化性的第一性原理计算研究[J]. 无机材料学报, 2024, 39(10): 1151-1158. |
[13] | 韩旭, 姚恒大, 吕梅, 陆红波, 朱俊. 单分子液晶添加剂在甲脒铅碘钙钛矿太阳能电池中的应用[J]. 无机材料学报, 2023, 38(9): 1097-1102. |
[14] | 方万丽, 沈黎丽, 李海艳, 陈薪羽, 陈宗琦, 寿春晖, 赵斌, 杨松旺. NiOx介孔层的成膜过程对碳电极钙钛矿太阳能电池性能的影响[J]. 无机材料学报, 2023, 38(9): 1103-1109. |
[15] | 丁统顺, 丰平, 孙学文, 单沪生, 李琪, 宋健. Fmoc-FF-OH钝化钙钛矿薄膜及其太阳能电池性能研究[J]. 无机材料学报, 2023, 38(9): 1076-1082. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||