无机材料学报 ›› 2026, Vol. 41 ›› Issue (1): 1-11.DOI: 10.15541/jim20250081 CSTR: 32189.14.jim20250081

• 综述 •    下一篇

3C-SiC晶体制备研究进展

徐锦涛1,2(), 高攀3(), 何唯一1, 蒋圣楠1, 潘秀红1, 汤美波1, 陈锟1, 刘学超1()   

  1. 1.中国科学院 上海硅酸盐研究所, 功能晶体与器件全国重点实验室, 上海 201899
    2.上海大学 微电子学院, 上海 200444
    3.上海电机学院 材料学院, 上海 201306
  • 收稿日期:2025-02-24 修回日期:2025-03-17 出版日期:2026-01-20 网络出版日期:2025-06-27
  • 通讯作者: 高 攀, 教授. E-mail: 32128@sdju.edu.cn;
    刘学超, 研究员. E-mail: xcliu@mail.sic.ac.cn
  • 作者简介:徐锦涛(1999-), 男, 硕士研究生. E-mail: 2781659973@qq.com
  • 基金资助:
    国家重点研发计划(2021YFA0716304);中国载人航天工程空间应用系统项目(GC-CL-2024-003)

Recent Progress on Preparation of 3C-SiC Single Crystal

XU Jintao1,2(), GAO Pan3(), HE Weiyi1, JIANG Shengnan1, PAN Xiuhong1, TANG Meibo1, CHEN Kun1, LIU Xuechao1()   

  1. 1. State Key Laboratory of Functional Crystals and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
    2. School of Microelectronics, Shanghai University, Shanghai 200444, China
    3. School of Materials, Shanghai Dianji University, Shanghai 201306, China
  • Received:2025-02-24 Revised:2025-03-17 Published:2026-01-20 Online:2025-06-27
  • Contact: GAO Pan, professor. E-mail: 32128@sdju.edu.cn;
    LIU Xuechao, professor. E-mail: xcliu@mail.sic.ac.cn
  • About author:XU Jintao (1999-), male, Master candidate. E-mail: 2781659973@qq.com
  • Supported by:
    National Key Research and Development Program of China(2021YFA0716304);Space Application System of China Manned Space Program(GC-CL-2024-003)

摘要:

碳化硅(SiC)作为一种典型的宽禁带半导体材料, 在大功率、高频、高温电子器件应用中的重要性日益凸显。近年来, SiC半导体已成为新能源汽车中电驱动模块和充电模块的主要功率器件材料, 相比Si基的绝缘栅极双极型晶体管(Insulated Gate Bipolar Transistors, IGBTs)少数载流子器件, SiC材料能够以高频器件结构的多数载流子器件(肖特基势垒二极管和金属-氧化物-半导体晶体管(MOSFET))实现高耐压, 同时具有低导通电阻、高频的特性。未来, SiC在交通新能源电动航空器及低空经济中的电动垂直起降航空器(Electric Vertical Take-off and Landing, eVTOL)、增强现实(Augmented Reality, AR)、光伏逆变与轨道交通等领域也将扮演不可或缺的角色。在众多SiC晶型中, 3C-SiC具有独特的立方结构, 并且有更高的热导率(500 W/(m·K))与沟道迁移率(约300 cm2/(V·s)), 展现了显著的应用潜力和研究价值。本文概述了3C-SiC晶体结构特点、基本物理特性、应用优势以及主要生长方法, 包括化学气相沉积(CVD)法、持续供料物理气相传输(CF-PVT)法、升华外延(SE)法和顶部籽晶溶液(TSSG)法, 综述了以上几种方法制备3C-SiC晶体的研究进展与最新成果, 重点分析讨论了气相和液相生长方法的热力学特性与生长机理, 并对微观层面的晶体生长过程进行分析总结, 展望了3C-SiC晶体的未来发展和应用方向。

关键词: 宽禁带半导体, 3C-SiC晶体, 晶体生长, 微观机理, 综述

Abstract:

Silicon carbide (SiC), as a representative wide bandgap semiconductor material, has increasingly demonstrated its significance in high-power, high-frequency and high-temperature electronic device applications. In recent years, SiC semiconductors have become primary material for power devices in electric drive modules and charging modules of new energy vehicles. Compared to Si-based insulated gate bipolar transistors (IGBTs), a kind of minority carrier device, SiC materials enable high-voltage resistance through majority carrier devices (such as Schottky barrier diodes and metal-oxide-semiconductor field-effect transistors (MOSFETs)) with high-frequency device structures, which conversely allows SiC to simultaneously achieve key characteristics of low on-resistance and high frequency. It is easy to deduce that, SiC will also play an indispensable role in emerging fields such as electric aircrafts, electric vertical take-off and landing (eVTOL) vehicles for low-altitude transportation, augmented reality (AR), photovoltaic inverters, and rail transportation. Among various SiC polytypes, 3C-SiC stands out due to its unique cubic crystal structure, higher thermal conductivity (500 W/(m·K)) and channel mobility (approximately 300 cm2/(V·s)), showcasing significant application potential and research value. This paper provides an overview of the crystal structure, fundamental physical properties, application advantages, and major growth methods of 3C-SiC, including chemical vapor deposition (CVD), continuous-feed physical vapor transport (CF-PVT), sublimation epitaxy (SE), and top-seeded solution growth (TSSG). Research progress and the latest achievements in 3C-SiC crystal growth using above techniques are reviewed, focusing on the thermodynamic characteristics and growth mechanisms of vapor-phase and liquid-phase methods. The microscopic processes of crystal growth are analyzed and summarized, and the future development directions and application prospects for 3C-SiC crystals are discussed.

Key words: wide bandgap semiconductor, 3C-SiC single crystal, crystal growth, micro-mechanism, review

中图分类号: