无机材料学报 ›› 2026, Vol. 41 ›› Issue (1): 12-26.DOI: 10.15541/jim20250019 CSTR: 32189.14.10.15541/jim20250019
范雨竹1(
), 王媛1, 王林燕1, 向美玲1, 鄢雨婷1, 黎本慧1, 李敏1, 文志东2,3, 王海超2,4, 陈永福5, 邱会东1, 赵波6, 周成裕1(
)
收稿日期:2025-01-14
修回日期:2025-04-14
出版日期:2026-01-20
网络出版日期:2025-05-09
通讯作者:
范雨竹, 副教授. E-mail: fanyuzhu1010@foxmail.com;作者简介:范雨竹(1990-), 女, 副教授. E-mail: fanyuzhu1010@foxmail.com
基金资助:
FAN Yuzhu1(
), WANG Yuan1, WANG Linyan1, XIANG Meiling1, YAN Yuting1, LI Benhui1, LI Min1, WEN Zhidong2,3, WANG Haichao2,4, CHEN Yongfu5, QIU Huidong1, ZHAO Bo6, ZHOU Chengyu1(
)
Received:2025-01-14
Revised:2025-04-14
Published:2026-01-20
Online:2025-05-09
Contact:
FAN Yuzhu, associate professor. E-mail: fanyuzhu1010@foxmail.com;About author:FAN Yuzhu (1990-), female, associate professor. E-mail: fanyuzhu1010@foxmail.com
Supported by:摘要:
水体Pb(II)污染严重危害生态环境与人类健康, 而吸附法可以简单、环保地处理Pb(II)。氧化石墨烯(GO)是一种潜在的理想吸附材料, 但其表面官能团种类有限、吸附选择性差、吸附后难分离等缺点制约了其实际应用。发展各种改性策略提高GO吸附性能, 已成为目前研究热点。本文针对如何提高GO对水中Pb(II)的吸附效率, 重点总结了N/S官能团改性、形貌改性、磁化改性三类改性策略; 综述了GO基吸附剂的吸附性能, 涵盖吸附容量、吸附选择性、再生性以及其他性能; 详细讨论了Pb(II)吸附的四种机理, 包括物理吸附、静电吸引、离子交换和表面络合; 最后对GO基吸附剂去除Pb(II)进行了展望, 以期为GO改性材料在Pb(II)处理方面的研究和应用提供参考依据。
中图分类号:
范雨竹, 王媛, 王林燕, 向美玲, 鄢雨婷, 黎本慧, 李敏, 文志东, 王海超, 陈永福, 邱会东, 赵波, 周成裕. 氧化石墨烯基吸附材料去除水体中Pb(II): 制备、性能及机理[J]. 无机材料学报, 2026, 41(1): 12-26.
FAN Yuzhu, WANG Yuan, WANG Linyan, XIANG Meiling, YAN Yuting, LI Benhui, LI Min, WEN Zhidong, WANG Haichao, CHEN Yongfu, QIU Huidong, ZHAO Bo, ZHOU Chengyu. Graphene Oxide-based Adsorbents for Pb(II) Removing in Water: Progresses on Synthesis, Performance and Mechanism[J]. Journal of Inorganic Materials, 2026, 41(1): 12-26.
图2 氮化改性策略[22-23,26]
Fig. 2 N modification strategies[22-23,26] (a) Schematic diagram of synthesis of phen-GO[22]; (b, c) Adsorption processes of Pb(II) on (b) PPDG[23] and (c) GOPU[26]
图3 硫化改性策略[30-31]
Fig. 3 S modification strategies[30-31] (a, b) Adsorption processes of Pb(II) on (a) SH-graphene bio-sponges[30] and (b) MGO@LaS nanocomposites[31]
| Type | Adsorbent | Adsorption condition | Adsorption capacity/ (mg·g-1) | Removal efficiency/% | Removal efficiency after desorption (desorption agent, cycle number) | Adsorption mechanism | Isotherm/ kinetic model | |
|---|---|---|---|---|---|---|---|---|
| pH, time/min | Dosage/ (g·L−1) | |||||||
| N | GO-NH2[ | 4-6, 10 | 1 | 71.89 | − | − | SC, EA, IE | L/PSO |
| IAT-GO[ | 5, 30 | 1 | 124 | 92.3 | >97% (0.4 mol/L HNO3, 5) | SC | L/PSO | |
| IOGO[ | 5, 360 | 0.4 | 798.87 | 87 | − (10% HCl, 5) | SC | L/PSO | |
| GOCAS[ | 5.2, 45 | 0.5 | 138.7 | 93 | >50% (HCl, 4) | − | F/PSO | |
| MGO-EDTA[ | 6.8, 120 | 0.5 | 211.3 | 82.83 | − | SC | F/PSO | |
| phen-GO[ | 6.0, 30 | 1 | 548 | 95 | − | SC | L/PSO | |
| PPDG[ | 4-6, 40 | 0.35 | 800 | − | 30% (0.5 mol/L NaOH, 3) | SC | L/PSO | |
| GO-IIP[ | 6.5, 30 | 0.5 | 40.02 | − | − (2 mol/L HCl, 5) | SC | L/PSO | |
| S | GO/ZnO/CS[ | 5, 120 | 0.5 | 110.88 | 92.4 | − | − | −/PSO |
| GO-SOxR[ | 6.5, 190 | − | 285 | − | − | EA, HB | R/PSO | |
| GOCS[ | 5.5, 30 | 3 | 383.4 | − | 74.26% (0.1 mol/L HNO3, 5) | EA, SC | L/PSO | |
| SH-graphene bio-sponge[ | 5.3, 300 | 1 | 101.01 | 90 | >90% (0.1 mol/L HCl, 5) | EA, SC | L/PSO | |
| MGO@LaS[ | 5, 40 | 0.5 | 123.46 | 95 | − | EA, SC | L/PSO | |
| Fe3S4/rGO[ | 6, − | 2 | 285.71 | 29.59 | 76.88% (0.03 mol/L HNO3, 5) | SC | L/PSO | |
| PVA/GO-SH[ | 6, 60 | 1 | 218.62 | 94.7 | >75% (0.2 mol/L HCl, 5) | SC | L/PSO | |
表1
Table 1 Adsorption characteristics of N/S functional group-modified GO-based adsorbents for Pb(II)[22-23,25,28 -31,33 -40]
| Type | Adsorbent | Adsorption condition | Adsorption capacity/ (mg·g-1) | Removal efficiency/% | Removal efficiency after desorption (desorption agent, cycle number) | Adsorption mechanism | Isotherm/ kinetic model | |
|---|---|---|---|---|---|---|---|---|
| pH, time/min | Dosage/ (g·L−1) | |||||||
| N | GO-NH2[ | 4-6, 10 | 1 | 71.89 | − | − | SC, EA, IE | L/PSO |
| IAT-GO[ | 5, 30 | 1 | 124 | 92.3 | >97% (0.4 mol/L HNO3, 5) | SC | L/PSO | |
| IOGO[ | 5, 360 | 0.4 | 798.87 | 87 | − (10% HCl, 5) | SC | L/PSO | |
| GOCAS[ | 5.2, 45 | 0.5 | 138.7 | 93 | >50% (HCl, 4) | − | F/PSO | |
| MGO-EDTA[ | 6.8, 120 | 0.5 | 211.3 | 82.83 | − | SC | F/PSO | |
| phen-GO[ | 6.0, 30 | 1 | 548 | 95 | − | SC | L/PSO | |
| PPDG[ | 4-6, 40 | 0.35 | 800 | − | 30% (0.5 mol/L NaOH, 3) | SC | L/PSO | |
| GO-IIP[ | 6.5, 30 | 0.5 | 40.02 | − | − (2 mol/L HCl, 5) | SC | L/PSO | |
| S | GO/ZnO/CS[ | 5, 120 | 0.5 | 110.88 | 92.4 | − | − | −/PSO |
| GO-SOxR[ | 6.5, 190 | − | 285 | − | − | EA, HB | R/PSO | |
| GOCS[ | 5.5, 30 | 3 | 383.4 | − | 74.26% (0.1 mol/L HNO3, 5) | EA, SC | L/PSO | |
| SH-graphene bio-sponge[ | 5.3, 300 | 1 | 101.01 | 90 | >90% (0.1 mol/L HCl, 5) | EA, SC | L/PSO | |
| MGO@LaS[ | 5, 40 | 0.5 | 123.46 | 95 | − | EA, SC | L/PSO | |
| Fe3S4/rGO[ | 6, − | 2 | 285.71 | 29.59 | 76.88% (0.03 mol/L HNO3, 5) | SC | L/PSO | |
| PVA/GO-SH[ | 6, 60 | 1 | 218.62 | 94.7 | >75% (0.2 mol/L HCl, 5) | SC | L/PSO | |
图4 不同方法制备的PGO的TEM照片[41-42,44,46]
Fig. 4 TEM images of PGO obtained by different preparation methods[41-42,44,46] (a) Hydrothermal method[41]; (b) Template method[42]; (c) Oxidation etching method[46]; (d) High-energy electron irradiation method[44]
| Adsorbent | Adsorption condition | Adsorption capacity/ (mg·g-1) | Removal efficiency/% | Removal efficiency after desorption (desorption agent, cycle number) | Adsorption mechanism | Isotherm/ kinetic model | |
|---|---|---|---|---|---|---|---|
| pH, time/min | Dosage/ (g·L−1) | ||||||
| GO-Si[ | − | 1 | 347.2 | − | − | EA | L/PSO |
| GOCB[ | 5, 120 | 2 | − | − | 48% (0.1 mol/L Na2EDTA, 3) >93% (0.1 mol/L HCl, 3) | PA | −/PFO |
| PGOC[ | − | − | 99 | − | 81% (−, 5) | SC | − |
| NT-CGG[ | 6, <30 | 0.1 | 470 | 99.9998 | 88% (0.05 mol/L EDTA, 5) | SC | L/PSO |
| BC/GO[ | 5, 90 | 0.4 | 224.5 | − | − | SC, EA | F/PSO |
表2 形貌改性GO基吸附剂对Pb(II)的吸附特性[49-53]
Table 2 Adsorption characteristics of morphology-modified GO-based adsorbents for Pb(II)[49-53]
| Adsorbent | Adsorption condition | Adsorption capacity/ (mg·g-1) | Removal efficiency/% | Removal efficiency after desorption (desorption agent, cycle number) | Adsorption mechanism | Isotherm/ kinetic model | |
|---|---|---|---|---|---|---|---|
| pH, time/min | Dosage/ (g·L−1) | ||||||
| GO-Si[ | − | 1 | 347.2 | − | − | EA | L/PSO |
| GOCB[ | 5, 120 | 2 | − | − | 48% (0.1 mol/L Na2EDTA, 3) >93% (0.1 mol/L HCl, 3) | PA | −/PFO |
| PGOC[ | − | − | 99 | − | 81% (−, 5) | SC | − |
| NT-CGG[ | 6, <30 | 0.1 | 470 | 99.9998 | 88% (0.05 mol/L EDTA, 5) | SC | L/PSO |
| BC/GO[ | 5, 90 | 0.4 | 224.5 | − | − | SC, EA | F/PSO |
| Adsorbent | Adsorption condition | Adsorption capacity/ (mg·g−1) | Removal efficiency/% | Removal efficiency after desorption (desorption agent, cycle number) | Adsorption mechanism | Isotherm /kinetic model | |
|---|---|---|---|---|---|---|---|
| pH, time/min | Dosage/ (g·L−1) | ||||||
| MZIF-8/GO2[ | 4−6, 10 | 0.4 | 625 | 99 | − | − | L/PSO |
| PPy-FG[ | 5, 180 | 0.4 | 93.2 | 85.7 | 85.7% (0.2 mol/L HNO3, 5) | − | L/PSO |
| Fe3O4@C-GO-MOF[ | 6, 60 | 1 | 344.83 | 87 | >85% (5% (in volume) HNO3, 5) | SC | L/PSO |
| MnFe2O4@SiO2-NH2@GO[ | 6.5, 30 | 0.5 | 42.48 | 99.8 | − (0.3 mol/L HCl, 5) | SC | L/PSO |
| MCGO[ | 8, 44 | 0.5 | 372.24 | 93.06 | 68.9% (−, 5) | EA | L/PSO |
| MgFe2O4-NGO[ | 7, 120 | 1 | 930 | 99.7 | 83.6% (0.1 mol/L HCl, 6) | SC, EA, PA | L/PSO |
| SMGI[ | 7, 60 | 0.4 | 1666.66 | − | 75% (0.05 mol/L HCl, 5) | EA | L/F/PSO |
| NH2/β-CD/NH2/β-CD MGO[ | 6.5, 75 | − | 296.16 | − | − (0.1 mol/L HCl, 5) | SC | F/PSO |
表3
Table 3 Adsorption characteristics of magnetization-modified GO-based adsorbents for Pb(II)[54-61]
| Adsorbent | Adsorption condition | Adsorption capacity/ (mg·g−1) | Removal efficiency/% | Removal efficiency after desorption (desorption agent, cycle number) | Adsorption mechanism | Isotherm /kinetic model | |
|---|---|---|---|---|---|---|---|
| pH, time/min | Dosage/ (g·L−1) | ||||||
| MZIF-8/GO2[ | 4−6, 10 | 0.4 | 625 | 99 | − | − | L/PSO |
| PPy-FG[ | 5, 180 | 0.4 | 93.2 | 85.7 | 85.7% (0.2 mol/L HNO3, 5) | − | L/PSO |
| Fe3O4@C-GO-MOF[ | 6, 60 | 1 | 344.83 | 87 | >85% (5% (in volume) HNO3, 5) | SC | L/PSO |
| MnFe2O4@SiO2-NH2@GO[ | 6.5, 30 | 0.5 | 42.48 | 99.8 | − (0.3 mol/L HCl, 5) | SC | L/PSO |
| MCGO[ | 8, 44 | 0.5 | 372.24 | 93.06 | 68.9% (−, 5) | EA | L/PSO |
| MgFe2O4-NGO[ | 7, 120 | 1 | 930 | 99.7 | 83.6% (0.1 mol/L HCl, 6) | SC, EA, PA | L/PSO |
| SMGI[ | 7, 60 | 0.4 | 1666.66 | − | 75% (0.05 mol/L HCl, 5) | EA | L/F/PSO |
| NH2/β-CD/NH2/β-CD MGO[ | 6.5, 75 | − | 296.16 | − | − (0.1 mol/L HCl, 5) | SC | F/PSO |
图5 不同MGO纳米复合材料的合成路线示意图[67,69]
Fig. 5 Schematic diagrams of synthesis routes of different MGO nanocomposites[67,69] (a) pFe3O4-GO[67]; (b) CMC/SA/GO@Fe3O4 (including its adsorption process for Pb(II))[69]
图6 不同GO基吸附剂的吸附性能[29-30,54,71 -72,83 -84,87]
Fig. 6 Adsorption performance of different GO-based adsorbents[29-30,54,71 -72,83 -84,87] (a) Effects of contact time and initial concentration on lead adsorption by GO and GOCS[29]; (b) Effect of Pb(II) initial concentration on adsorption capacity of 3D CA/GO for Pb(II)[71]; (c) Effect of Pb(II) initial concentration on adsorption efficiency of MCGO for Pb(II)[54]; (d) Competitive adsorption of Cu(II), Pb(II), Zn(II), and Cd(II) ions on GO/P(AA-co-AM)[83]; (e) Selectivity of multiple metal ions for SH-graphene bio-sponge in comparison with activated carbon and alginate sponge[30]; (f-h) Recyclability of (f) GOLA[72], (g) GO-MBT[87] and (h) GFC nanosorbent[84] for Pb(II) removal
| Adsorbent | Adsorption condition | Adsorptioncapacity/ (mg·g−1) | Removal efficiency/% | Removal efficiency after desorption (desorption agent, cycle number) | Adsorption mechanism | Isotherm/ kinetic model | |
|---|---|---|---|---|---|---|---|
| pH, time/min | Dosage/ (g·L−1) | ||||||
| OSH[ | 8, 70 | 12 | 6.1 | − | 87% (0.1 mol/L HCl, 3) | EA | F/PSO |
| Zeolite[ | 6, 24 h | 1 | 14 | − | − | PA | L/PSO |
| Calcined MCM-41[ | 5, 120 | 4 | 18.8 | − | − | PA | F/PSO |
| Cu0.5Mg0.5Fe2O4[ | 7, 180 | 2 | 57.7 | 97 | ~90% (2 mol/L NaOH, 5) | − | L/PSO |
| AC/MIL-101(Al)[ | 6, 90 | 0.6 | 241 | − | 92.6% (HCl, 4) | EA, SC, IE | L/PSO |
| Ceramsite[ | 6, 750 | 12 | 46.7 | − | >80% (0.03 mol/L HCl/NaOH, 5) | IE, EA | L/PSO |
| AC from peanut shells[ | 4.5, 50 | 2 | 130.89 | 95 | 66% (NaCl, 4) | EA, IE, PA | L/PSO |
| FmB[ | 6.5, 180 | 1 | 73.68 | 95 | >41.2% (0.1 mol/L HCl, −) | EA, IE | L/PSO |
| PAANa[ | −, 170 | 10 | 173.6 | − | − | IE | F/L/PSO |
| GOLA[ | 5, 20 | 0.12 | 505.8 | − | 90.6% (HNO3, −) | SC | L/PSO |
| 3D CA/GO[ | 3, 240 | 0.4 | 490.2 | 99.8 | 91.6% (1 mol/L HCl, 8) | EA, SC, IE | F/PSO |
| Pip@MGO[ | 6, 27.5 | 0.7 | 558.2 | − | >90% (1 mol/L HNO3, 4) | SC, IE | − |
| FeGO-TiLa[ | 6, 120 | 2 | 109.89 | 93 | 71% (0.1 mol/L HCl, 10) | EA | L/PSO |
表4
Table 4 Comparsion on Pb(II) removal performance of GO-based and other adsorbents[68,71 -82]
| Adsorbent | Adsorption condition | Adsorptioncapacity/ (mg·g−1) | Removal efficiency/% | Removal efficiency after desorption (desorption agent, cycle number) | Adsorption mechanism | Isotherm/ kinetic model | |
|---|---|---|---|---|---|---|---|
| pH, time/min | Dosage/ (g·L−1) | ||||||
| OSH[ | 8, 70 | 12 | 6.1 | − | 87% (0.1 mol/L HCl, 3) | EA | F/PSO |
| Zeolite[ | 6, 24 h | 1 | 14 | − | − | PA | L/PSO |
| Calcined MCM-41[ | 5, 120 | 4 | 18.8 | − | − | PA | F/PSO |
| Cu0.5Mg0.5Fe2O4[ | 7, 180 | 2 | 57.7 | 97 | ~90% (2 mol/L NaOH, 5) | − | L/PSO |
| AC/MIL-101(Al)[ | 6, 90 | 0.6 | 241 | − | 92.6% (HCl, 4) | EA, SC, IE | L/PSO |
| Ceramsite[ | 6, 750 | 12 | 46.7 | − | >80% (0.03 mol/L HCl/NaOH, 5) | IE, EA | L/PSO |
| AC from peanut shells[ | 4.5, 50 | 2 | 130.89 | 95 | 66% (NaCl, 4) | EA, IE, PA | L/PSO |
| FmB[ | 6.5, 180 | 1 | 73.68 | 95 | >41.2% (0.1 mol/L HCl, −) | EA, IE | L/PSO |
| PAANa[ | −, 170 | 10 | 173.6 | − | − | IE | F/L/PSO |
| GOLA[ | 5, 20 | 0.12 | 505.8 | − | 90.6% (HNO3, −) | SC | L/PSO |
| 3D CA/GO[ | 3, 240 | 0.4 | 490.2 | 99.8 | 91.6% (1 mol/L HCl, 8) | EA, SC, IE | F/PSO |
| Pip@MGO[ | 6, 27.5 | 0.7 | 558.2 | − | >90% (1 mol/L HNO3, 4) | SC, IE | − |
| FeGO-TiLa[ | 6, 120 | 2 | 109.89 | 93 | 71% (0.1 mol/L HCl, 10) | EA | L/PSO |
| [41] |
TENG J, ZENG X, XU X, et al. Assembly of a novel porous 3D graphene oxide-starch architecture by a facile hydrothermal method and its adsorption properties toward metal ions. Materials Letters, 2018, 214: 31.
DOI URL |
| [42] |
LI Z S, LI B L, DU L J, et al. Three-dimensional oxygen-doped porous graphene: sodium chloride-template preparation, structural characterization and supercapacitor performances. Chinese Journal of Chemical Engineering, 2021, 40: 304.
DOI |
| [43] |
LIU Z J, ZHANG W H, YIN M J, et al. Tailored GO nanosheets for porous framework to high CO2 adsorption. Chemical Engineering Journal, 2024, 498: 155127.
DOI URL |
| [44] |
OLEJNICZAK A, RYMZHANOV R A. From nanohole to ultralong straight nanochannel fabrication in graphene oxide with swift heavy ions. Nature Communications, 2023, 14: 889.
DOI PMID |
| [45] |
LI B L, LI Z S, PANG Q, et al. Synthesis and characterization of activated 3D graphene via catalytic growth and chemical activation for electrochemical energy storage in supercapacitors. Electrochimica Acta, 2019, 324: 134878.
DOI URL |
| [46] |
WU T R, MOGHADAM F, LI K. High-performance porous graphene oxide hollow fiber membranes with tailored pore sizes for water purification. Journal of Membrane Science, 2022, 645: 120216.
DOI URL |
| [47] |
KONG F X, YOU L, CAO J M, et al. Effect of etching and reduction time on the structure, performance, and stability of GO-based membrane for water purification. Journal of Environmental Chemical Engineering, 2023, 11(1): 109215.
DOI URL |
| [48] |
LI Y, ZHAO W, WEYLAND M, et al. Thermally reduced nanoporous graphene oxide membrane for desalination. Environmental Science & Technology, 2019, 53(14): 8314.
DOI URL |
| [49] | CHENG J H, GAO M L, YANG L, et al. Coral-inspired “nanotentaclization” porous composite gel for efficient removal of lead(II) from aqueous solution. Materials & Design, 2020, 195: 109072. |
| [50] |
MOHARRAM M A K, TOHAMI K, EL HOTABY W M, et al. Graphene oxide porous crosslinked cellulose nanocomposite microspheres for lead removal: kinetic study. Reactive and Functional Polymers, 2016, 101: 9.
DOI URL |
| [51] |
ZHANG X X, XU J, ZHANG Z J, et al. Pb(II) adsorption properties of a three-dimensional porous bacterial cellulose/graphene oxide composite hydrogel subjected to ultrasonic treatment. Materials, 2024, 17(13): 3053.
DOI URL |
| [52] |
PACHIYAPPAN J, GNANASUNDARAM N. Using graphene oxide-silica [GO-Si] nano composite adsorbent, removal of heavy metal ions (lead and mercury) from industrial wastewater and analysing its performance. Rasayan Journal of Chemistry, 2020, 13(3): 2027.
DOI URL |
| [53] |
HE Y Q, ZHANG N N, WANG X D. Adsorption of graphene oxide/chitosan porous materials for metal ions. Chinese Chemical Letters, 2011, 22(7): 859.
DOI |
| [54] |
GUO T, BULIN C K, LI C N, et al. Experimental and statistical physics illumination of Pb(II) adsorption on magnetic chitosan- graphene oxide surface. Separation and Purification Technology, 2025, 354: 128867.
DOI URL |
| [55] |
KIREETI K V M K, CHANDRAKANTH G, KADAM M M, et al. A sodium modified reduced graphene oxide-Fe3O4 nanocomposite for efficient lead(II) adsorption. RSC Advances, 2016, 6(88): 84825.
DOI URL |
| [56] |
AHMAD S Z N, SALLEH W N W, YUSOF N, et al. Efficiency of magnetic zeolitic imidazolate framework-8 (ZIF-8) modified graphene oxide for lead adsorption. Environmental Science and Pollution Research, 2025, 32: 19302.
DOI |
| [57] |
LIU Z M, GAO Z M, XU L C, et al. Polypyrrole modified magnetic reduced graphene oxide composites: synthesis, characterization and application for selective lead adsorption. RSC Advances, 2020, 10(30): 17524.
DOI PMID |
| [58] |
WANG Y, LIN K, LIU Y, et al. Nanocomposites of functionalized metal-organic frameworks and magnetic graphene oxide for selective adsorption and efficient determination of lead(II). Journal of Solid State Chemistry, 2022, 313: 123300.
DOI URL |
| [59] |
HOU L, QIN G J, QU Y Q, et al. Fabrication of recoverable magnetic composite material based on graphene oxide for fast removal of lead and cadmium ions from aqueous solution. Journal of Chemical Technology & Biotechnology, 2021, 96(5): 1345.
DOI URL |
| [60] |
KAUR M, KAUR M, SINGH D, et al. Magnesium ferrite- nitrogen-doped graphene oxide nanocomposite: effective adsorptive removal of lead(II) and arsenic(III). Environmental Science and Pollution Research, 2022, 29(32): 48260.
DOI |
| [61] |
JAVANMIRPOURSHIRZADI Z, HARGALANI F Z, ROBATI M, et al. Removal of lead (II) from aqueous solutions using β-cyclodextrin functionalized magnetic graphene oxide nanocomposite, performance, and optimization with response surface methodology. Journal of Nanoparticle Research, 2023, 25(7): 131.
DOI |
| [62] |
TANG T T, CAO S R, XI C X, et al. Chitosan functionalized magnetic graphene oxide nanocomposite for the sensitive and effective determination of alkaloids in hotpot. International Journal of Biological Macromolecules, 2020, 146: 343.
DOI PMID |
| [63] |
CHAI D, CHEN Y, JIANG Z, et al. Insight on magnetic nitrogen-doped graphene oxide composite electrode constructing heterogeneous electro-Fenton system for treating organophosphorus pesticide wastewater. Separation and Purification Technology, 2024, 345: 127419.
DOI URL |
| [64] |
HE Y, YI C, ZHANG X L, et al. Magnetic graphene oxide: synthesis approaches, physicochemical characteristics, and biomedical applications. TrAC Trends in Analytical Chemistry, 2021, 136: 116191.
DOI URL |
| [65] |
LI S, JI J, SHAN S, et al. Efficient adsorption removal of tetrabromobisphenol A from water by using a magnetic composite Fe3O4/GO/ZIF-67. Crystals, 2024, 14(6): 508.
DOI URL |
| [66] |
BERTRAN A, SANDOVAL S, ORÓ-SOLÉ J, et al. Particle size determination from magnetization curves in reduced graphene oxide decorated with monodispersed superparamagnetic iron oxide nanoparticles. Journal of Colloid and Interface Science, 2020, 566: 107.
DOI PMID |
| [67] |
YANG W J, ZHONG Y C, HE C X, et al. Electrostatic self-assembly of pFe3O4 nanoparticles on graphene oxide: a co-dispersed nanosystem reinforces PLLA scaffolds. Journal of Advanced Research, 2020, 24: 191.
DOI URL |
| [68] |
DE ANDRADE M B, GUERRA A C S, DOS SANTOS T R T, et al. Simplified synthesis of new GO-α-γ-Fe2O3-Sh adsorbent material composed of graphene oxide decorated with iron oxide nanoparticles applied for removing diuron from aqueous medium. Journal of Environmental Chemical Engineering, 2020, 8(4): 103903.
DOI URL |
| [69] |
WU Z G, DENG W J, ZHOU W, et al. Novel magnetic polysaccharide/graphene oxide @Fe3O4 gel beads for adsorbing heavy metal ions. Carbohydrate Polymers, 2019, 216: 119.
DOI URL |
| [70] |
AZAM M G, KABIR M H, SHAIKH M A A, et al. A rapid and efficient adsorptive removal of lead from water using graphene oxide prepared from waste dry cell battery. Journal of Water Process Engineering, 2022, 46: 102597.
DOI URL |
| [71] |
WANG N, SONG F X, NIU Y X, et al. Three-dimensional-printed calcium alginate/graphene oxide porous adsorbent with super-high lead ion adsorption ability in aqueous solution. Separation and Purification Technology, 2023, 326: 124757.
DOI URL |
| [72] |
ZHANG C Z, JIN R H, SHEN Q Q, et al. Synthesis of graphene oxide grafted by diazanyl groups and its application in recovery of lead from lead-acid wastewater. Environmental Science and Pollution Research International, 2023, 30(11): 29844.
DOI |
| [73] |
ALBOGHBEISH M, LARKI A, SAGHANEZHAD S J. Effective removal of Pb(II) ions using piperazine-modified magnetic graphene oxide nanocomposite; optimization by response surface methodology. Scientific Reports, 2022, 12(1): 9658.
DOI PMID |
| [74] | RAKHYM A B, SEILKHANOVA G A, KURMANBAYEVA T S. Adsorption of lead (II) ions from water solutions with natural zeolite and chamotte clay. Materials Today: Proceedings, 2020, 31: 482. |
| [75] |
WEI H, SONG B, HUAN Q, et al. Preparation of iron tailings-based porous ceramsite and its application to lead adsorption: characteristic and mechanism. Separation and Purification Technology, 2024, 342: 126839.
DOI URL |
| [76] |
TRAN C V, QUANG D V, THI H P N, et al. Effective removal of Pb(II) from aqueous media by a new design of Cu-Mg binary ferrite. ACS Omega, 2020, 5(13): 7298.
DOI PMID |
| [77] |
HASHEM H M, EL-MAGHRABEY M, EL-SHAHENY R. Inclusive study of peanut shells derived activated carbon as an adsorbent for removal of lead and methylene blue from water. Scientific Reports, 2024, 14(1): 13515.
DOI PMID |
| [78] |
CHEN Z H, YU C, DONG H F, et al. Sorption-desorption characteristics and internal mechanism of lead ions on polycarboxylic ion exchange resin. Journal of Polymer Research, 2022, 29(12): 512.
DOI |
| [79] | KAUR M, KUMARI S, SHARMA P. Removal of Pb (II) from aqueous solution using nanoadsorbent of Oryza sativa husk: isotherm, kinetic and thermodynamic studies. Biotechnology Reports, 2020, 25: e00410. |
| [80] |
PUTZ A M, IVANKOV O I, KUKLIN A I, et al. Ordered mesoporous silica prepared in different solvent conditions: application for Cu(II) and Pb(II) adsorption. Gels, 2022, 8(7): 443.
DOI URL |
| [81] |
YAZEED E W S A, MANSOUR B N H, IBRAHIM A A, et al. Activated carbon encapsulated aluminum metal-organic frameworks as an active and recyclable adsorbent for removal of different dyes and lead from aqueous solution. Inorganic Chemistry Communications, 2025, 171: 113558.
DOI URL |
| [82] |
MOSLEH N, AHRANJANI P J, PARANDI E, et al. Titanium lanthanum three oxides decorated magnetic graphene oxide for adsorption of lead ions from aqueous media. Environmental Research, 2022, 214: 113831.
DOI URL |
| [83] |
LIU M, WANG Y, WU Y J, et al. Preparation of graphene oxide hydrogels and their adsorption applications toward various heavy metal ions in aqueous media. Applied Sciences, 2023, 13(21): 11948.
DOI URL |
| [84] | VO L Q, VU A T, LE T D, et al. Fe3O4/graphene oxide/chitosan nanocomposite: a smart nanosorbent for lead(II) ion removal from contaminated water. ACS Omega, 2024, 9(15): 17506. |
| [85] |
BAKHTIARI S, SALARI M, SHAHRASHOUB M, et al. A comprehensive review on green and eco-friendly nano-adsorbents for the removal of heavy metal ions: synthesis, adsorption mechanisms, and applications. Current Pollution Reports, 2024, 10: 1.
DOI |
| [86] |
NICOLA R, COSTIŞOR O, CIOPEC M, et al. Silica-coated magnetic nanocomposites for Pb2+ removal from aqueous solution. Applied Sciences, 2020, 10(8): 2726.
DOI URL |
| [87] |
BHARDWAJ M, TEWARI S, KUMARI N, et al. Adsorption of Pb(II) and Cd(II) by functionalized graphene oxide (GO-MBT): mechanisms, antibacterial activity, and DFT studies. Inorganic Chemistry Communications, 2024, 164: 112464.
DOI URL |
| [88] |
WU W P, GE H C. Preparation of amino-silane and thiosemicarbazide modified graphene oxide composite for high uptake adsorption of Hg(II) and Pb(II). Journal of Dispersion Science and Technology, 2025, 46(7): 1059.
DOI URL |
| [89] |
ZHOU C Y, LI B H, LI Y F, et al. A review of graphene oxide-based adsorbents for removing lead ions in water. Journal of Environmental Chemical Engineering, 2024, 12(1): 111839.
DOI URL |
| [90] |
WU B L, WAN J, ZHANG Y Y, et al. Selective phosphate removal from water and wastewater using sorption: process fundamentals and removal mechanisms. Environmental Science & Technology, 2020, 54(1): 50.
DOI URL |
| [91] | GONZÁLEZ-HERRERO H, RÍO E C, MALLET P, et al. Hydrogen physisorption channel on graphene: a highway for atomic H diffusion. 2D Materials, 2019, 6(2): 021004. |
| [92] | SHARMA P, SINGH A K, SHAHI V K. Selective adsorption of Pb(II) from aqueous medium by cross-linked chitosan-functionalized graphene oxide adsorbent. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 1427. |
| [93] |
WEI M P, CHAI H, CAO Y L, et al. Sulfonated graphene oxide as an adsorbent for removal of Pb2+ and methylene blue. Journal of Colloid and Interface Science, 2018, 524: 297.
DOI URL |
| [94] |
FAN Y Z, DONG J X, ZHANG Y, et al. A smartphone-coalesced nanoprobe for high selective ammonia sensing based on the pH-responsive biomass carbon nanodots and headspace single drop microextraction. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 219: 382.
DOI URL |
| [95] |
FAN Y Z, TANG Q, LIU S G, et al. A smartphone-integrated dual-mode nanosensor based on novel green-fluorescent carbon quantum dots for rapid and highly selective detection of 2,4,6- trinitrophenol and pH. Applied Surface Science, 2019, 492: 550.
DOI URL |
| [96] |
DONG X Y, GAO X, SONG J Q, et al. A novel dispersive magnetic solid phase microextraction using ionic liquid-coated amino silanized magnetic graphene oxide nanocomposite for high efficient separation/preconcentration of toxic ions from shellfish samples. Food Chemistry, 2021, 360: 130023.
DOI URL |
| [97] |
CAO Z F, WEN X, WANG J, et al. In situ nano-Fe3O4/ triisopropanolamine functionalized graphene oxide composites to enhance Pb2+ ions removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 561: 209.
DOI URL |
| [98] |
HUSEIN D Z, HASSANIEN R, KHAMIS M. Cadmium oxide nanoparticles/graphene composite: synthesis, theoretical insights into reactivity and adsorption study. RSC Advances, 2021, 11(43): 27027.
DOI PMID |
| [99] |
LALMI A, BOUHIDEL K E, SAHRAOUI B, et al. Removal of lead from polluted waters using ion exchange resin with Ca(NO3)2 for elution. Hydrometallurgy, 2018, 178: 287.
DOI URL |
| [100] |
FAN Y Z, HAN L, LIU S G, et al. A ratiometric optical strategy for bromide and iodide ion sensing based on target-induced competitive coordination of a metal-organic nanosystem. Journal of Materials Chemistry C, 2020, 8(33): 11517.
DOI URL |
| [1] |
ABDELWAHEB M, JEBALI K, DHAOUADI H, et al. Adsorption of nitrate, phosphate, nickel and lead on soils: risk of groundwater contamination. Ecotoxicology and Environmental Safety, 2019, 179: 182.
DOI PMID |
| [2] |
YAO X, STEVEN X X, YANG Y N, et al. Stratification of population in NHANES 2009-2014 based on exposure pattern of lead, cadmium, mercury, and arsenic and their association with cardiovascular, renal and respiratory outcomes. Environment International, 2021, 149: 106410.
DOI URL |
| [3] |
SALL M L, DIAW A K D, GNINGUE-SALL D, et al. Toxic heavy metals: impact on the environment and human health, and treatment with conducting organic polymers, a review. Environmental Science and Pollution Research International, 2020, 27(24): 29927.
DOI PMID |
| [4] |
JOSHI N C, GURURANI P. Advances of graphene oxide based nanocomposite materials in the treatment of wastewater containing heavy metal ions and dyes. Current Research in Green and Sustainable Chemistry, 2022, 5: 100306.
DOI URL |
| [5] |
CHOUDHARI U, RAMGIR N, VAGHELA C, et al. Sensitive and selective electrochemical lead sensor: a synergistic effect of nanobiocomposite. Microchemical Journal, 2024, 202: 110763.
DOI URL |
| [6] |
KAUR S, ROY A. Bioremediation of heavy metals from wastewater using nanomaterials. Environment, Development and Sustainability, 2021, 23(7): 9617.
DOI |
| [7] |
张海虎, 呙润华, 刘喜杰. 改性氧化石墨烯的制备及应用研究进展. 化工新型材料, 2022, 50(12): 12.
DOI |
| [8] | 张笑娟, 魏琦峰, 任秀莲. 氧化石墨烯的制备方法、结构、性质及应用研究进展. 应用化工, 2022, 51(7): 2106. |
| [9] |
GAIDUKEVIC J, AUKSTAKOJYTE R, NAVICKAS T, et al. A novel approach to prepare highly oxidized graphene oxide: structural and electrochemical investigations. Applied Surface Science, 2021, 567: 150883.
DOI URL |
| [10] |
AZIZ K H H, MUSTAFA F S, OMER K M, et al. Heavy metal pollution in the aquatic environment: efficient and low-cost removal approaches to eliminate their toxicity: a review. RSC Advances, 2023, 13(26): 17595.
DOI PMID |
| [11] | 陈玥琪, 张震斌, 单凤君. 氧化石墨烯及其复合材料对重金属离子的吸附研究进展. 辽宁工业大学学报(自然科学版), 2022, 42(5): 325. |
| [12] |
ZHANG L, ZHANG Z, WANG L, et al. Mechanism and application of sulfhydryl-modified chitosan derivative for decontamination of Pb(II) and Cd(II) in water bodies. International Journal of Biological Macromolecules, 2025, 306: 141535.
DOI URL |
| [13] |
ARYEE A A, MPATANI F M, HAN R P, et al. A review on adsorbents for the remediation of wastewater: antibacterial and adsorption study. Journal of Environmental Chemical Engineering, 2021, 9(6): 106907.
DOI URL |
| [14] |
YAN H, HU W H, CHENG S, et al. Microwave-assisted preparation of manganese dioxide modified activated carbon for adsorption of lead ions. Water Science and Technology, 2020, 82(1): 170.
DOI PMID |
| [15] |
NEOLAKA Y A B, RIWU A A P, AIGBE U O, et al. Potential of activated carbon from various sources as a low-cost adsorbent to remove heavy metals and synthetic dyes. Results in Chemistry, 2023, 5: 100711.
DOI URL |
| [16] |
BESSA R A, FRANÇA A M M, PEREIRA A L S, et al. Hierarchical zeolite based on multiporous zeolite A and bacterial cellulose: an efficient adsorbent of Pb2+. Microporous and Mesoporous Materials, 2021, 312: 110752.
DOI URL |
| [17] |
NEOLAKA Y A B, SUPRIYANTO G, KUSUMA H S. Adsorption performance of Cr(VI)-imprinted poly(4-VP-co-MMA) supported on activated Indonesia (Ende-Flores) natural zeolite structure for Cr(VI) removal from aqueous solution. Journal of Environmental Chemical Engineering, 2018, 6(2): 3436.
DOI URL |
| [18] |
WANG S F, LI X, LIU Y G, et al. Nitrogen-containing amino compounds functionalized graphene oxide: synthesis, characterization and application for the removal of pollutants from wastewater: a review. Journal of Hazardous Materials, 2018, 342: 177.
DOI PMID |
| [19] |
YANG X D, WAN Y S, ZHENG Y L, et al. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: a critical review. Chemical Engineering Journal, 2019, 366: 608.
DOI URL |
| [20] |
TIWARI S K, SAHOO S, WANG N, et al. Graphene research and their outputs: status andprospect. Journal of Science: Advanced Materials and Devices, 2020, 5(1): 10.
DOI URL |
| [21] |
JIANG X, RUAN G, HUANG Y, et al. Assembly and application advancement of organic-functionalized graphene-based materials: a review. Journal of Separation Science, 2020, 43(8): 1544.
DOI PMID |
| [22] |
FEIST B, PILCH M, NYCZ J. Graphene oxide chemically modified with 5-amino-1,10-phenanthroline as sorbent for separation and preconcentration of trace amount of lead(II). Microchimica Acta, 2019, 186(2): 91.
DOI |
| [23] |
ARCHANA S, RADHIKA D, JAYANNA B K, et al. Functionalization and partial grafting of the reduced graphene oxide with p-phenylenediamine: an adsorption and photodegradation studies. FlatChem, 2021, 26: 100210.
DOI URL |
| [24] |
ZHENG B, CHU X X, LI H, et al. Layered graphene oxide membranes functioned by amino acids for efficient separation of metal ions. Applied Surface Science, 2021, 546: 149145.
DOI URL |
| [25] |
HUANG R J, SHAO N, HOU L, et al. Fabrication of an efficient surface ion-imprinted polymer based on sandwich-like graphene oxide composite materials for fast and selective removal of lead ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 566: 218.
DOI URL |
| [26] |
SAHU P S, VERMA R P, DABHADE A H, et al. A novel, efficient and economical alternative for the removal of toxic organic, inorganic and pathogenic water pollutants using GO-modified PU granular composite. Environmental Pollution, 2023, 328: 121201.
DOI URL |
| [27] | ZARENEZHAD M, ZAREI M, EBRATKHAHAN M, et al. Synthesis and study of functionalized magnetic graphene oxide for Pb2+ removal from wastewater. Environmental Technology & Innovation, 2021, 22: 101384. |
| [28] |
PIRVEYSIAN M, GHIACI M. Synthesis and characterization of sulfur functionalized graphene oxide nanosheets as efficient sorbent for removal of Pb2+, Cd2+, Ni2+ and Zn2+ ions from aqueous solution: a combined thermodynamic and kinetic studies. Applied Surface Science, 2018, 428: 98.
DOI URL |
| [29] |
LIAN Q Y, AHMAD Z U, GANG D D, et al. The effects of carbon disulfide driven functionalization on graphene oxide for enhanced Pb(II) adsorption: investigation of adsorption mechanism. Chemosphere, 2020, 248: 126078.
DOI URL |
| [30] |
YAP P L, AUYOONG Y L, HASSAN K, et al. Multithiol functionalized graphene bio-sponge via photoinitiated thiol-ene click chemistry for efficient heavy metal ions adsorption. Chemical Engineering Journal, 2020, 395: 124965.
DOI URL |
| [31] |
REZANIA S, MOJIRI A, PARK J, et al. Removal of lead ions from wastewater using lanthanum sulfide nanoparticle decorated over magnetic graphene oxide. Environmental Research, 2022, 204: 111959.
DOI URL |
| [101] |
FAN Y Z, HAN L, YANG Y Z, et al. Multifunctional binding strategy on nonconjugated polymer nanoparticles for ratiometric detection and effective removal of mercury ions. Environmental Science & Technology, 2020, 54(16): 10270.
DOI URL |
| [102] |
LEMMA L, KIFLIE Z, KASSAHUN S K. Adsorption of Pb2+ and Cd2+ on the L-cysteine-functionalized graphene oxide/chitosan/ polyvinyl alcohol hydrogel: kinetic, isotherm, and thermodynamic study. Remediation Journal, 2023, 33(3): 233.
DOI URL |
| [103] | 周博秋, 李慧强, 廖维, 等. GO-LDH复合材料对水中铅离子的吸附性能. 中国给水排水, 2019, 35(17): 105. |
| [32] |
DIAGBOYA P N, MMAKO H K, DIKIO E D, et al. Synthesis of amine and thiol dual functionalized graphene oxide for aqueous sequestration of lead. Journal of Environmental Chemical Engineering, 2019, 7(6): 103461.
DOI URL |
| [33] |
HUANG H Y, WANG Y, ZHANG Y B, et al. Amino-functionalized graphene oxide for Cr(VI), Cu(II), Pb(II) and Cd(II) removal from industrial wastewater. Open Chemistry, 2020, 18(1): 97.
DOI URL |
| [34] |
BAKRY A M, AMRI N, ADLY M S, et al. Remediation of water containing lead(II) using (3-iminodiacetic acid) propyltriethoxysilane grapheneoxide. Scientific Reports, 2024, 14: 18848.
DOI |
| [35] |
ZOU L, SHANG W, MIN T T, et al. Efficient removal of Pb(II) and Cd(II) ions from wastewater using amidoxime functionalized graphene oxide. The Canadian Journal of Chemical Engineering, 2025, 103(2): 799.
DOI URL |
| [36] |
LOH N Y L, TEE W T, HANSON S, et al. Enhanced removal of lead and zinc by a 3D aluminium sulphate-functionalised graphene aerogel as an effective adsorption system. Chemosphere, 2024, 362: 142537.
DOI URL |
| [37] |
XING C J, XIA A Q, YU L, et al. Enhanced removal of Pb(II) from aqueous solution using EDTA-modified magnetic graphene oxide. CLEAN - Soil, Air, Water, 2021, 49(4): 2000272.
DOI URL |
| [38] |
MANZOOR Q, FARRUKH M A, SAJID A. Optimization of lead (II) and chromium (VI) adsorption using graphene oxide/ZnO/chitosan nanocomposite by response surface methodology. Applied Surface Science, 2024, 655: 159544.
DOI URL |
| [39] |
KONG L, LI Z C, HUANG X Q, et al. Efficient removal of Pb(II) from water using magnetic Fe3S4/reduced graphene oxide composites. Journal of Materials Chemistry A, 2017, 5(36): 19333.
DOI URL |
| [40] | ZHANG H N, LIU X M, TIAN L H, et al. Preparation of functionalized graphene oxide composite spheres and removal of Cu2+ and Pb2+ from wastewater. Water,Air, & Soil Pollution, 2022, 233(12): 512. |
| [1] | 邬博宇, 张深根, 张生杨, 刘波, 张柏林. CeO2对MnOx催化剂低温脱硝性能的影响及其机理研究[J]. 无机材料学报, 2026, 41(1): 87-95. |
| [2] | 徐锦涛, 高攀, 何唯一, 蒋圣楠, 潘秀红, 汤美波, 陈锟, 刘学超. 3C-SiC晶体制备研究进展[J]. 无机材料学报, 2026, 41(1): 1-11. |
| [3] | 余升阳, 苏海军, 姜浩, 余明辉, 姚佳彤, 杨培鑫. 激光增材制造超高温氧化物陶瓷孔隙缺陷形成及抑制研究进展[J]. 无机材料学报, 2025, 40(9): 944-956. |
| [4] | 李福平, 褚家宝, 仇海波, 党薇, 李晨曦, 赵康, 汤玉斐. SiO2纤维气凝胶的压缩回弹机理[J]. 无机材料学报, 2025, 40(9): 981-988. |
| [5] | 刘江平, 管鑫, 唐振杰, 朱文杰, 罗永明. 含氮挥发性有机化合物催化氧化的研究进展[J]. 无机材料学报, 2025, 40(9): 933-943. |
| [6] | 李荣辉, 钱骏. 一步醇热法制备纳米CeO2-ZrO2固溶体及其除砷性能[J]. 无机材料学报, 2025, 40(9): 989-996. |
| [7] | 肖晓琳, 王玉祥, 谷佩洋, 朱圳荣, 孙勇. 二维无机材料调控病损皮肤组织再生的研究进展[J]. 无机材料学报, 2025, 40(8): 860-870. |
| [8] | 马景阁, 吴成铁. 无机生物材料用于毛囊和毛发再生的研究[J]. 无机材料学报, 2025, 40(8): 901-910. |
| [9] | 张洪健, 赵梓壹, 吴成铁. 无机生物材料调控神经细胞功能及神经化组织再生的研究进展[J]. 无机材料学报, 2025, 40(8): 849-859. |
| [10] | 艾敏慧, 雷波. 微纳米生物活性玻璃: 功能化设计与血管化皮肤再生[J]. 无机材料学报, 2025, 40(8): 921-932. |
| [11] | 王宇彤, 常江, 徐合, 吴成铁. 硅酸盐生物陶瓷/玻璃促创面修复的研究进展:作用、机制和应用方式[J]. 无机材料学报, 2025, 40(8): 911-920. |
| [12] | 马文平, 韩雅卉, 吴成铁, 吕宏旭. 无机活性材料在类器官研究领域的应用[J]. 无机材料学报, 2025, 40(8): 888-900. |
| [13] | 罗晓民, 乔志龙, 刘颍, 杨晨, 常江. 无机生物活性材料调控心肌再生的研究进展[J]. 无机材料学报, 2025, 40(8): 871-887. |
| [14] | 朱文杰, 唐璐, 陆继长, 刘江平, 罗永明. 钙钛矿型氧化物催化氧化挥发性有机化合物的研究进展[J]. 无机材料学报, 2025, 40(7): 735-746. |
| [15] | 魏建文, 张丽娟, 耿琳琳, 李誉, 廖雷, 王敦球. 以ZSM-5/MCM-48为载体制备新型高容量CO2吸附剂的性能及机理研究[J]. 无机材料学报, 2025, 40(7): 833-839. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||