无机材料学报 ›› 2025, Vol. 40 ›› Issue (6): 575-586.DOI: 10.15541/jim20240533
吴杰1,2(), 杨帅1, 王明文1, 李景雷1, 李纯纯1, 李飞1(
)
收稿日期:
2024-12-23
修回日期:
2025-02-05
出版日期:
2025-06-20
网络出版日期:
2025-02-19
通讯作者:
李 飞, 教授. E-mail: ful5@xjtu.edu.cn作者简介:
吴 杰(1989-), 男, 副教授. E-mail: hitwujie@163.com
基金资助:
WU Jie1,2(), YANG Shuai1, WANG Mingwen1, LI Jinglei1, LI Chunchun1, LI Fei1(
)
Received:
2024-12-23
Revised:
2025-02-05
Published:
2025-06-20
Online:
2025-02-19
Contact:
LI Fei, professor. E-mail: ful5@xjtu.edu.cnAbout author:
WU Jie (1989-), male, associate professor. E-mail: hitwujie@163.com
Supported by:
摘要:
压电材料是一种重要的信息功能材料, 能够实现机械能与电能之间的相互转化。近年来, 织构压电陶瓷技术已经成为研发新一代高性能压电材料的重要途径。通过调控晶粒的取向排布, 织构压电陶瓷表现出类似压电单晶的优异压电性能和机电性能, 并具有良好的温度稳定性。同时, 作为多晶陶瓷, 织构陶瓷保留了传统陶瓷材料的制备加工简单、机械性能良好及适用共型异形等优点。本文围绕钛酸铅(PbTiO3, PT)基压电材料体系, 从织构压电陶瓷制备技术、织构用籽晶模板以及织构压电陶瓷技术的发展历程和研究现状等方面, 对相关研究结果进行系统梳理, 总结织构压电陶瓷技术优势。在此基础上, 分析了铅基织构压电陶瓷的模板筛选理论、织构陶瓷微观结构和宏观性能之间的构效关系, 以及基于织构压电陶瓷的压电器件开发等方面存在的科学难题和未来挑战。本文旨在全面介绍织构压电陶瓷技术和理论, 帮助研究者深入认识织构压电陶瓷技术, 推动高性能压电陶瓷研发和制备技术发展, 进而助力我国高端压电器件的创新和跨越发展。
中图分类号:
吴杰, 杨帅, 王明文, 李景雷, 李纯纯, 李飞. 铅基织构压电陶瓷的发展历程、现状与挑战[J]. 无机材料学报, 2025, 40(6): 575-586.
WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge[J]. Journal of Inorganic Materials, 2025, 40(6): 575-586.
图4 采用(a) Sr3Ti2O7[40]、(b) SrBi4Ti4O15[42]和(c) Bi4Ti3O12[43]前驱微晶合成的片状SrTiO3微晶的微观形貌
Fig. 4 Micro-morphologies of SrTiO3 platelets synthesized using (a) Sr3Ti2O7[40], (b) SrBi4Ti4O15[42] and (c) Bi4Ti3O12[43] precursors
图6 以(a) PbO[50]、(b) Pb(CH3COO)2·3H2O[51]、(c) (PbCO3)2·Pb(OH)2[52]为原料通过TMC法合成的PT片状微晶的微观形貌
Fig. 6 Micro-morphologies of PT platelets synthesized via TMC using (a) PbO[50], (b) Pb(CH3COO)2·3H2O[51] and (c) (PbCO3)2·Pb(OH)2[52] as Pb sources
图7 以(a)棒状BaTi2O5[53]和(b)棒状TiO2[54]前驱物合成的棒状BaTiO3微晶的SEM照片
Fig. 7 SEM images of rod-shape BaTiO3 microcrystal converted from (a) BaTi2O5[53] and (b) TiO2[54]
图11 (a) PMN-PT微晶模板的SEM照片及(b)采用PMN-PT模板制备的织构压电陶瓷的XRD图谱[67]
Fig. 11 (a) SEM image of PMN-PT templates and (b) XRD patterns of PMN-PT textured ceramics using PMN-PT templates[67]
图12 不同BT模板含量PMN-PT织构陶瓷的(a)XRD图谱和(b)织构度[69]
Fig. 12 (a) XRD patterns and (b) texture degrees of PMN-PT textured ceramics as a function of BT concentration[69]
Composition | Relative permittivity, εr | d33/(pC·N-1) | Curie temperature, TC/℃ | Ref. |
---|---|---|---|---|
PMN-PZT | / | 878 (d33*) | 220 | [ |
PMN-PZT | 2310 | 1100 | 204 | [ |
PIN-PMN-PT | / | 780 | 225 | [ |
PIN-PMN-PT | 2415 | 841 | 210 | [ |
PYN-PMN-PT | 2110 | 1340 (d33*) | 214 | [ |
PZT-PZNN | 2300 | 920 (d33*) | 256 | [ |
表1 三元铅基织构压电陶瓷的性能参数[60,70 -71,73 -74,76]
Table 1 Performance parameters of textured ternary PT-based ceramics[60,70 -71,73 -74,76]
Composition | Relative permittivity, εr | d33/(pC·N-1) | Curie temperature, TC/℃ | Ref. |
---|---|---|---|---|
PMN-PZT | / | 878 (d33*) | 220 | [ |
PMN-PZT | 2310 | 1100 | 204 | [ |
PIN-PMN-PT | / | 780 | 225 | [ |
PIN-PMN-PT | 2415 | 841 | 210 | [ |
PYN-PMN-PT | 2110 | 1340 (d33*) | 214 | [ |
PZT-PZNN | 2300 | 920 (d33*) | 256 | [ |
图15 PZT织构演化的原理图和实验观测结果[91]
Fig. 15 Schematic illustration and experimental realization of PZT texturing process[91] (a) Schematic illustration of the proposed texturing process with the color of PZT matrix indicating composition; (b, c) Cross-sectional SEM images for samples with average Zr : Ti ratio of 55 : 45 sintered at different temperatures, where (b) is an enlarged image of the layer with 3% (in volume) BZT templates in (c); (d) SEM-EDS images of Zr element, where the sample is the same as that in (c)
[1] | LI X, WANG Z, HE C, et al. Growth and piezo-/ferroelectric properties of PIN-PMN-PT single crystals. Journal of Applied Physics, 2012, 111: 034105. |
[2] | CHANG Y, STEPHEN F P, YANG Z, et al. (001) textured (K0.5Na0.5)(Nb0.97Sb0.03)O3 piezoelectric ceramics with high electromechanical coupling over a broad temperature rang. Applied Physics Letters, 2009, 95: 232905. |
[3] | DAUMONT C, REN W, INFANTE I C. Strain dependence of polarization and piezoelectric response in epitaxial BiFeO3 thin films. Journal of Physics: Condensed Matter, 2012, 24(16): 162202. |
[4] | ZHANG Q, BHARTU V, ZHAO X. Giant electrostriction and relaxor ferroelectric bahavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science, 1998, 280(2372): 2101. |
[5] | ZHOU M, SUN M, LI M M. Fabrication and properties of 1-3-2 multi-element piezoelectric composite. Journal of Electroceramics, 2012, 28(2/3): 139. |
[6] | LI F, CABRAL M J, XU B, et al. Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. Science, 2019, 364(6437): 264. |
[7] | LEE S T F, LAM K H, ZHANG X M. High-frequency ultrasonic transducer based on lead-free BSZT piezoceramics. Ultrasonics, 2011, 51(7): 811. |
[8] | DA SILVA B R C, WERNECK M M. Optical high-voltage sensor based on fiber Bragg grating and PZT piezoelectric ceramics. IEEE Transactions on Instrumentation and Measurement, 2011, 60(6): 2118. |
[9] | ZHENG Y Y, JIANG X P, JIANG F L. The properties of Mn-doped (Na(1-x)Kx)0.5Bi0.5TiO3 lead-free ceramics and their application as filters. Rare Metal Materials and Engineering, 2008, 37(1): 759. |
[10] | GENG H F, ZENG K, WANG B Q, et al. Giant electric field- induced strain in lead-free piezoceramics. Science, 2022, 378(6624): 1125. |
[11] | SAITO Y, TAKAO H, TANI T, et al. Lead-free piezoceramics. Nature, 2004, 432: 84. |
[12] | WEI H G, WANG H, XIA Y J, et al. An overview of lead-free piezoelectric materials and devices. Journal of Materials Chemistry C, 2018, 6: 12446. |
[13] | RODEL J, JO W, SEIFER K, et al. Perspective on the development of lead-free piezoceramics. Journal of the American Ceramic Society, 2009, 92(6): 1153. |
[14] | LI P, ZHAI J W, SHEN B, et al. Ultrahigh piezoelectric properties in textured (K,Na)NbO3-based lead-free ceramics. Advanced Materials. 2018, 30: 1705171. |
[15] | LIU Y C, CHANG Y F, LI F, et al. Exceptionally high piezoelectric coefficient and low strain hysteresis in grain-oriented (Ba, Ca)(Ti, Zr)O3 through integrating crystallographic texture and domain engineering. ACS Applied Materials & Interfaces, 2017, 9: 29863. |
[16] | PARK S E, SHROUT T R. Relaxor based ferroelectric single crystals for electro-mechanical actuators. Materials Research Innovations, 1997, 1(1): 20. |
[17] | ZHANG S J, LI F. High performance ferroelectric relaxor-PbTiO3 single crystals: status and perspective. Journal of Applied Physics, 2012, 111(3): 031301. |
[18] | SUN E W, CAO W W. Relaxor-based ferroelectric single crystals: growth, domain engineering, characterization and applications. Progress in Materials Science, 2014, 65: 124. |
[19] | LUO N N, LI Y Y, XIA Z G, et al. Progress in lead-based ferroelectric and antiferroelectric single crystals: composition modification, crystal growth and properties. CrystEngComm, 2012, 14: 4547. |
[20] | MESSING G, TROLIER-MCKINSTRY S, SABOLSKY E M, et al. Templated grain growth of textured piezoelectric ceramics. Critical Reviews in Solid State and Materials Sciences, 2004, 29: 45. |
[21] | MESSING G, POTERALA S, CHANG Y F, et al. Texture-engineered ceramics—property enhancements through crystallographic tailoring. Journal of Materials Research, 2017, 32: 3219. |
[22] | MORIANA A, ZHANG S J. Lead-free textured piezoceramics using tape casting: a review. Journal of Materiomics, 2018, 4: 277. |
[23] | WU J, ZHANG S J, LI F. Prospect of texture engineered ferroelectric ceramics. Applied Physics Letters, 2022, 121: 120501. |
[24] | 杨帅, 王明文, 吴杰, 等. 铅基织构压电陶瓷研究进展. 硅酸盐学报, 2022, 50(3): 598. |
[25] | ZHANG Z, DUAN X M, QIU B F, et al. Preparation and anisotropic properties of textured structural ceramics: a review. Journal of Advanced Ceramics, 2019, 8: 289. |
[26] | LOTGERING F K. Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures-I. Journal of Inorganic and Nuclear Chemistry, 1959, 9: 113. |
[27] | DOLLASE W A. Correction of intensities for preferred orientation in powder diffractometry—application of the March model. Journal of Applied Crystallography, 1986, 19: 267. |
[28] | GOYAL A, FEENSTRA R, LIST F A, et al. Using RABiTS to fabricate high-temperature superconducting wire. JOM, 1999, 51: 19. |
[29] | JIN S, SHERWOOD R C, DOVER R B, et al. High TC superconductors-composite wire fabrication. Applied Physics Letters, 1987, 51: 203. |
[30] | SAKKA Y, SUZUKI T S. Textured development of feeble magnetic ceramics by colloidal processing under high magnetic field. Journal of the Ceramic Society of Japan, 2005, 113: 26. |
[31] | 吴杰. PbTiO3基三元弛豫铁电陶瓷的晶向织构和电学性能研究. 哈尔滨: 哈尔滨工业大学博士学位论文, 2019. |
[32] | SABOLSKY E M, MESSING G, TROLIER-MCKINSTRY S. Kinetics of templated grain growth of 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3. Journal of the American Ceramic Society, 2001, 84(11): 2507. |
[33] | YAN Y K, CHO K, PRIYA S. Templated grain growth of <001>-textured 0.675Pb(Mg1/3Nb2/3)O3-0.325PbTiO3 piezoelectric ceramics for magnetic field sensors. Journal of the American Ceramic Society, 2011, 94(6): 1784. |
[34] | HUANG Q W, XU J, ZHU L H, et al. Molten salt synthesis of acicular Ba2NaNb5O15 seed crystals. Journal of the American Ceramic Society, 2005, 88(2): 447. |
[35] | KAN Y M, JIN X H, WANG P L, et al. Anisotropic grain growth of Bi4Ti3O12 in molten salt fluxes. Materials Research Bulletin, 2003, 38: 567. |
[36] | SCHAAK R E, MALLOUK T E. Perovskites by design: a toolbox of solid-state reactions. Chemical Materials, 2002, 14: 1455. |
[37] | SCHAAK R E, MALLOUK T E. Topochemical synthesis of three-dimensional perovskites from lamellar precursors. Journal of the American Ceramic Society, 2000, 122: 2798. |
[38] | WATARI K, BRAHMAROUTU B, MESSING G, et al. Epitaxial growth of anisotropically shaped, single-crystal particles of cubic SrTiO3. Journal of Materials Research, 2000, 15: 846. |
[39] | LIU Y F, LU Y N, XU M, et al. Topochemical reaction of SrTiO3 platelet crystals based on Sr3Ti2O7 platelet precursor in molten salt synthesis process. Materials Chemistry and Physics, 2009, 114: 37. |
[40] | LIU H X, SUN X Q, ZHAO Q L, et al. The syntheses and microstructures of tabular SrTiO3 crystal. Solid-State Electronics, 2003, 47: 2295. |
[41] | SAITO Y, TAKAO H. Synthesizing of platelike {100} SrTiO3 particle by topochemical microcrystal conversion method. Japanese Journal of Applied Physics, 2006, 45: 7377. |
[42] | CHANG Y F, NING H P, WU J, et al. Formation mechanism of (001) oriented perovskite SrTiO3 microplatelets synthesized by topochemical microcrystal conversion. Inorganic Chemistry, 2014, 53: 11060. |
[43] | WU J, CHANG Y F, LV W M, et al. Topochemical transformation of single crystalline SrTiO3 microplatelets from Bi4Ti3O12 precursors and their orientation-dependent surface piezoelectricity. CrystEngComm, 2018, 20: 3084. |
[44] | LIU D, YAN Y K, ZHOU H P. Synthesis of micron-scale platelet BaTiO3. Journal of the American Ceramic Society, 2007, 90(4): 1323. |
[45] | KRZMANC M M, JANCAR B, URSIC H, et al. Tailoring the shape, size, crystal structure, and preferential growth orientation of BaTiO3 plates synthesized through a topochemical conversion process. Crystal Growth & Design, 2017, 17: 3210. |
[46] | FENG Q, HIRASAWA M, YANAGISAWA K. Synthesis of crystal- axis-oriented BaTiO3 and anatase platelike particles by a hydrothermal soft chemical process. Chemistry Materials, 2001, 13: 290. |
[47] | FENG Q, ISHIKAWA Y, MAKITA Y, et al. Solvothermal soft chemical synthesis and characterization of plate-like particles constructed from oriented BaTiO3 nanocrystals. Journal of the Ceramic Society of Japan, 2010, 118(2): 141. |
[48] | LV D Y, ZUO R Z, SU S. Processing and morphology of (111) BaTiO3 crystal platelets by a two-step molten salt method. Journal of the American Ceramic Society, 2012, 95(6): 1838. |
[49] | FU J, HOU Y D, ZHENG M P, et al. Topochemical conversion of (111) BaTiO3 piezoelectric microplatelets using Ba6Ti17O40 as the precursor. Crystal Growth & Design, 2019, 19: 1198. |
[50] | POTERALA S F, MEYER R J, MESSING G L. Synthesis of high aspect ratio PbBi4Ti4O15 and topochemical conversion to PbTiO3-based microplatelets. Journal of the American Ceramic Society, 2011, 94(8): 2323. |
[51] | LI L L, WANG J, GUO Q L, et al. Fabrication and topchemical transformation mechanism of PbTiO3 microplatelets. Ceramics International, 2023, 49: 7970. |
[52] | NA Y, KWON J, NAHM S, et al. Morphological evolution of PbTiO3 microstructures synthesized by topochemical microcrystal conversion. Journal of the American Ceramic Society, 2022, 105: 47512. |
[53] | FU J, HOU Y, ZHENG M, et al. Topochemical build-up of BaTiO3 nanorods using BaTi2O5 as the template. CrystEngComm, 2017, 19: 1115. |
[54] | HUANG K, HUANG T, HSIEH W. Morphology-controlled synthesis of barium titanate nanostructures. Inorganic Chemistry, 2009, 48: 9180. |
[55] | HAYASHI Y, KIMURA T, TAKASHI Y. Preparation of rod-shaped BaTiO3 powder. Journal of Materials Science, 1986, 21: 757. |
[56] | CHENG L, LI J. A review on one dimensional perovskite nanocrystals for piezoelectric applications. Journal of Materiomics, 2016, 2: 25. |
[57] | DENG Y, WANG J, ZHU K, et al. Synthesis and characterization of single-crystal PbTiO3 nanorods. Material Letters, 2005, 59: 3272. |
[58] | DENG H, QIU Y, YANG S. General surfactant-free synthesis of MTiO3 (M=Ba, Sr, Pb) perovskite nanostrips. Journal of Materials Chemistry, 2009, 19: 976. |
[59] | SABOLSKY E M, TROLIER-MCKINSTRY S, MESSING G. Dielectric and piezoelectric properties of <001> fiber-textured 0.675Pb(Mg1/3Nb2/3)O3-0.325PbTiO3 ceramics. Journal of Applied Physics, 2003, 93(7): 4072. |
[60] | RICHTER T, DENNELER S, SCHUH C, et al. Textured PMN-PT and PMN-PZT. Journal of the American Ceramic Society, 2008, 91(3): 929. |
[61] | KWON S, SABOLSKY E M, MESSING G, et al. High strain, <001> textured 0.675Pb(Mg1/3Nb2/3)O3-0.325PbTiO3 ceramics: templated grain growth and piezoelectric properties. Journal of the American Ceramic Society, 2005, 88(2): 312. |
[62] | BROSNAN K H, POTERALA S F, MEYER R J, et al. Templated grain growth of <001> textured PMN-28PT using SrTiO3 templates. Journal of the American Ceramic Society, 2009, 92(S1): S133. |
[63] | POTERALA S F, TROLIER-MCKINSTRY S, MEYER R J, et al. Processing, texture quality, and piezoelectric properties of <001>C textured (1-x)Pb(Mg1/3Nb2/3)TiO3-xPbTiO3 ceramics. Journal of Applied Physics, 2011, 110: 014105. |
[64] | POTERALA S F, TROLIER-MCKINSTRY S, MEYER R J, et al. Fabrication and properties of radially <001>C textured PMN-PT cylinders for transducer applications. Journal of Applied Physics, 2012, 112: 014105. |
[65] | POTERALA S F, TROLIER-MCKINSTRY S, MEYER R J, et al. Low-field dynamic magnetic alignment and templated grain growth of diamagnetic PMN-PT ceramics. Journal of Materials Research, 2013, 28(21): 2960. |
[66] | AMORIN H, URSIC H, RAMOS P, et al. Pb(Mg1/3Nb2/3)O3-PbTiO3 textured ceramics with high piezoelectric response by a novel templated grain growth approach. Journal of the American Ceramic Society, 2014, 97(2): 420. |
[67] | THI M P, MARCH G, COLOMBAN P. Phase diagram and Raman imaging of grain growth mechanisms in highly textured Pb(Mg1/3Nb2/3)O3-PbTiO3 piezoelectric ceramics. Journal of the European Ceramic Society, 2005, 25: 3335. |
[68] | YAN Y K, ZHOU Y, PRIYA S. Enhanced electromechanical coupling in Pb(Mg1/3Nb2/3)O3-PbTiO3 <001>C radially textured cylinders. Applied Physics Letters, 2010, 104: 012910. |
[69] | YAN Y K, WANG Y U, PRIYA S. Electromechanical behavior of [001]-textured Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics. Applied Physics Letters, 2012, 100: 192905. |
[70] | YAN Y K, CHO K, MAURYA D, et al. Giant energy density in [001]-textured Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3 piezoelectric ceramics. Applied Physics Letters, 2013, 102: 042903. |
[71] | CHANG Y F, SUN Y, WU J, et al. Formation mechanism of highly [001]C textured Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 relaxor ferroelectric ceramics with giant piezoelectricity. Journal of the European Ceramic Society, 2016, 36: 1973. |
[72] | CHANG Y F, WATSON B, FANTON M, et al. Enhanced texture evolution and piezoelectric properties in CuO-doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 grain-oriented ceramics. Applied Physics Letters, 2017, 111: 232901. |
[73] | WEI D D, YUAN Q B, ZHANG G Q, et al. Templated grain growth and piezoelectric properties of <001>-textured PIN-PMN-PT ceramics. Journal of Materials Research, 2015, 30(14): 2144. |
[74] | DURAN C, DURSUN S, AKÇA E. High strain, <001>-textured Pb(Mg1/3Nb2/3)O3-Pb(Yb1/2Nb1/2)O3-PbTiO3 piezoelectric ceramics. Scripta Materialia, 2016, 113: 14. |
[75] | DURAN C, CENGIZ S, ECEBAŞ N. Processing and characterization of <001>-textured Pb(Mg1/3Nb2/3)O3-Pb(Yb1/2Nb1/2)O3-PbTiO3 ceramics. Journal of Materials Research, 2017, 32(13): 2471. |
[76] | LEE T, LEE H, PARK S, et al. Structural and piezoelectric properties of <001> textured PZT-PZNN piezoelectric ceramics. Journal of the American Ceramic Society, 2017, 100: 5681. |
[77] | ZHOU J E, YAN Y K, PRIYA S, et al. Computational study of textured ferroelectric polycrystals: dielectric and piezoelectric properties of template-matrix composites. Journal of Applied Physics, 2017, 121: 024101. |
[78] | MING C, YANG T N, LUAN K, et al. Microstructural effects on effective piezoelectric responses of textured PMN-PT ceramics. Acta Materialia, 2018, 145: 62. |
[79] | SEABAUGH M M, SUVACI E, BRAHMAROUTU B, et al. Modeling anisotropic single crystal growth kinetics in liquid phase sintered α-Al2O3. Interface Science, 2000, 8: 257. |
[80] | YANG S, WANG M W, WANG L, et al. Achieving both high electromechanical properties and temperature stability in textured PMN-PT ceramics. Journal of the American Ceramic Society, 2022, 105: 3322. |
[81] | LIU L J, YANG B, LV R, et al. Enhanced unipolar electrical fatigue resistance and related mechanism in grain-oriented Pb(Mg1/3Nb2/3)O3-Pb(Zr, Ti)O3 piezoceramics. Journal of Materials Science & Technology, 2023, 145: 40. |
[82] | WEI D D, WANG H. Low-temperature sintering and enhanced piezoelectric properties of random and textured PIN-PMN-PT ceramics with Li2CO3. Journal of the American Ceramic Society, 2017, 100: 1073. |
[83] | YANG S, LI J L, LIU Y, et al. Textured ferroelectric ceramics with high electromechanical coupling factors over a broad temperature range. Nature Communications, 2021, 12: 1414. |
[84] | JIA H R, LI Z, WU F, et al. Extremely large strain response under low driving electric fields in lead-based textured piezoelectric ceramics. Ceramics International, 2023, 49: 2806. |
[85] | LENG H Y, YAN Y K, WANG B, et al. High performance high-power textured Mn/Cu-doped PIN-PMN-PT ceramics. Acta Materialia, 2022, 234: 118015. |
[86] | LIU H R, YAN Y K, LENG H Y, et al. High performance high power textured piezoceramics. Applied Physics Letters, 2020, 116: 252901. |
[87] | YAN Y K, GENG L W, ZHU L F, et al. Ultrahigh piezoelectric performance through synergistic compositional and microstructural engineering. Advanced Science, 2022, 9: 2105715. |
[88] | 刘琳婧. 高性能PMN-PZ-PT基织构陶瓷的构筑及在超声换能器中的应用研究. 哈尔滨: 哈尔滨工业大学博士学位论文, 2024. |
[89] | QIU R G, GUO F F, WU J, et al. Enhanced grain orientation degree and electrical properties in PSN-PMN-PT textured ceramics under the effect of sintering aids. Journal of Materials Science & Technology, 2024, 199: 114. |
[90] | DEVEMY S, COURTOIS C, CHAMPAGNE P, et al. Textured PZT ceramics. Powder Technology, 2009, 190(1/2): 141. |
[91] | LI J L, QU W B, DANIELS J, et al. Lead zirconate titanate ceramics with aligned crystallite grains. Science, 2023, 380(6640): 87. |
[1] | 胡智超, 杨鸿宇, 杨鸿程, 孙成礼, 杨俊, 李恩竹. P-V-L键理论在微波介质陶瓷性能调控中的应用[J]. 无机材料学报, 2025, 40(6): 609-626. |
[2] | 吴琼, 沈炳林, 张茂华, 姚方周, 邢志鹏, 王轲. 铅基织构压电陶瓷研究进展[J]. 无机材料学报, 2025, 40(6): 563-574. |
[3] | 张碧辉, 刘小强, 陈湘明. Ruddlesden-Popper结构杂化非常规铁电体的研究进展[J]. 无机材料学报, 2025, 40(6): 587-608. |
[4] | 姜昆, 李乐天, 郑木鹏, 胡永明, 潘勤学, 吴超峰, 王轲. PZT陶瓷的低温烧结研究进展[J]. 无机材料学报, 2025, 40(6): 627-638. |
[5] | 田睿智, 兰正义, 殷杰, 郝南京, 陈航榕, 马明. 基于微流控技术的纳米无机生物材料制备: 原理及其研究进展[J]. 无机材料学报, 2025, 40(4): 337-347. |
[6] | 张继国, 吴田, 赵旭, 杨钒, 夏天, 孙士恩. 钠离子电池正极材料循环稳定性提升策略及产业化进程[J]. 无机材料学报, 2025, 40(4): 348-362. |
[7] | 殷杰, 耿佳毅, 王康龙, 陈忠明, 刘学建, 黄政仁. SiC陶瓷的3D打印成形与致密化新进展[J]. 无机材料学报, 2025, 40(3): 245-255. |
[8] | 谌广昌, 段小明, 朱金荣, 龚情, 蔡德龙, 李宇航, 杨东雷, 陈彪, 李新民, 邓旭东, 余瑾, 刘博雅, 何培刚, 贾德昌, 周玉. 直升机特定结构先进陶瓷材料研究进展与应用展望[J]. 无机材料学报, 2025, 40(3): 225-244. |
[9] | 高天宇, 刘东, 赵思雪, 邓伟, 张波萍, 朱立峰. 温度稳定性优异的K0.5Na0.5NbO3基压电陶瓷及其1-3型换能器[J]. 无机材料学报, 2025, 40(3): 297-304. |
[10] | 范晓波, 祖梅, 杨向飞, 宋策, 陈晨, 王子, 罗文华, 程海峰. 质子调控型电化学离子突触研究进展[J]. 无机材料学报, 2025, 40(3): 256-270. |
[11] | 海热古·吐逊, 郭乐, 丁嘉仪, 周嘉琪, 张学良, 努尔尼沙·阿力甫. 上转换荧光探针辅助的光学成像技术在肿瘤显影中的应用研究进展[J]. 无机材料学报, 2025, 40(2): 145-158. |
[12] | 孙树娟, 郑南南, 潘昊坤, 马猛, 陈俊, 黄秀兵. 单原子催化剂制备方法的研究进展[J]. 无机材料学报, 2025, 40(2): 113-127. |
[13] | 陶桂龙, 支国伟, 罗添友, 欧阳佩东, 衣新燕, 李国强. 空腔型薄膜体声波滤波器的关键技术进展[J]. 无机材料学报, 2025, 40(2): 128-144. |
[14] | 周帆, 田志林, 李斌. 热防护系统用碳化物超高温陶瓷抗烧蚀涂层研究进展[J]. 无机材料学报, 2025, 40(1): 1-16. |
[15] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||