张碧辉1,2,3, 刘小强2,4, 陈湘明2
收稿日期:
2024-12-17
修回日期:
2025-02-14
作者简介:
张碧辉(1996-),女,博士,讲师. E-mail: zhangbh@cqut.edu.cn
基金资助:
ZHANG Bihui1,2,3, LIU Xiaoqiang2,4, CHEN Xiangming2
Received:
2024-12-17
Revised:
2025-02-14
About author:
ZHANG Bihui (1996-),female,PhD,Lecturer. E-mail: zhangbh@cqut.edu.cn
Supported by:
摘要: 杂化非常规铁电性(Hybrid Improper Ferroelectricity, HIF)指的是在含钙钛矿结构单元的化合物中,通过阴离子八面体面内旋转和面外倾侧耦合而产生的二阶铁电序。HIF有望在强磁电耦合多铁性材料中获得重要应用,并极大地拓展铁电体物理学的内涵和外延。本文总结了Ruddlesden-Popper(R-P)结构杂化非常规铁电体的实验研究进展,建立了双层R-P结构铁电体的居里温度和许容因子之间的线性关系,并阐述其HIF物理起源。基于杂化非常规铁电体的内禀电控磁性,在双层R-P铁氧体中观察到室温极性相和弱铁磁相共存,具有重要的科学意义。此外,在A位离子有序三层R-P氧化物中报道的铁电性显著拓宽了HIF的研究广度和深度。尽管R-P结构的杂化非常规铁电体的研究已取得显著进展,但在新材料体系和单相多铁性材料探索上仍需进一步努力。
张碧辉, 刘小强, 陈湘明. Ruddlesden-Popper结构杂化非常规铁电体的研究进展[J]. 无机材料学报, DOI: 10.15541/jim20240521.
ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectricity with Ruddlesden-Popper Structure[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20240521.
[1] SCOTT J F.Applications of modern ferroelectrics.Science, 2007, 315(5814): 954. [2] YANG S Y, SEIDEL J, BYRNES S J, et al. Above-bandgap voltages from ferroelectric photovoltaic devices. Nature Nanotechnology, 2010, 5(2): 143. [3] CHEONG S W, MOSTOVOY M. Multiferroics: a magnetic twist for ferroelectricity. Nature Materials, 2007, 6(1): 13. [4] WANG K F, LIU J M, REN Z F. Multiferroicity: the coupling between magnetic and polarization orders. Advances in Physics, 2009, 58(4): 321. [5] HILL N A. Why are there so few magnetic ferroelectrics? The Journal of Physical Chemistry B, 2000, 104(29): 6694. [6] WANG J, NEATON J B, ZHENG H, et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science, 2003, 299(5613): 1719. [7] DONG S, LIU J M, CHEONG S W, et al. Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology. Advances in Physics, 2015, 64(5/6): 519. [8] KIMURA T, GOTO T, SHINTANI H, et al. Magnetic control of ferroelectric polarization. Nature, 2003, 426(6962): 55. [9] GOODENOUGH J B. Theory of the role of covalence in the perovskite-type manganites[La, M(II)] MnO3. Physical Review, 1955, 100(2): 564. [10] MILLIS A J. Lattice effects in magnetoresistive manganese perovskites. Nature, 1998, 392(6672): 147. [11] LEVANYUK A P, SANNIKOV D G.Anomalies in dielectric properties in phase transitions.Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki, 1968, 55: 256. [12] LEVANYUK A P, SANNIKOV D G.Improper ferroelectrics.Uspekhi Fizicheskih Nauk, 1974, 112(4): 561. [13] DVOŘÁK V. Improper ferroelectrics. Ferroelectrics, 1974, 7(1): 1. [14] BOUSQUET E, DAWBER M, STUCKI N, et al. Improper ferroelectricity in perovskite oxide artificial superlattices. Nature, 2008, 452(7188): 732. [15] BENEDEK N A, FENNIE C J. Hybrid improper ferroelectricity: a mechanism for controllable polarization-magnetization coupling. Physical Review Letters, 2011, 106(10): 107204. [16] ZHANG Y J, WANG J, GHOSEZ P. Unraveling the suppression of oxygen octahedra rotations in A3B2O7 Ruddlesden-Popper compounds: engineering multiferroicity and beyond. Physical Review Letters, 2020, 125(15): 157601. [17] WANG F, GAO H, DE GRAAF C, et al. Switchable Rashba anisotropy in layered hybrid organic-inorganic perovskite by hybrid improper ferroelectricity. NPJ Computational Materials, 2020, 6: 183. [18] VARIGNON J, BRISTOWE N C, GHOSEZ P. Electric field control of Jahn-Teller distortions in bulk perovskites. Physical Review Letters, 2016, 116(5): 057602. [19] TIAN H, KUANG X Y, MAO A J, et al. Novel type of ferroelectricity in brownmillerite structures: a first-principles study. Physical Review Materials, 2018, 2(8): 084402. [20] STROPPA A, BARONE P, JAIN P, et al. Hybrid improper ferroelectricity in a multiferroic and magnetoelectric metal-organic framework. Advanced Materials, 2013, 25(16): 2284. [21] YOUNG J, STROPPA A, PICOZZI S, et al. Anharmonic lattice interactions in improper ferroelectrics for multiferroic design. Journal of Physics: Condensed Matter, 2015, 27(28): 283202. [22] BRUCE A D, COWLEY R A, BURNS G. Structural phase transitions. Physics Today, 1981, 34(12): 58. [23] BRUCE A D. Universal phenomena near structural phase transitions. Ferroelectrics, 1981, 35(1): 43. [24] XU B, WANG D W, ZHAO H J, et al. Hybrid improper ferroelectricity in multiferroic superlattices: finite-temperature properties and electric-field-driven switching of polarization and magnetization. Advanced Functional Materials, 2015, 25(24): 3626. [25] 刘小强, 吴淑雅, 朱晓莉, 等. Ruddlesden-Popper结构杂化非本征铁电体及其多铁性. 物理学报, 2018, 67(15): 157503. [26] MULDER A T, BENEDEK N A, RONDINELLI J M,et al. Turning ABO3 antiferroelectrics into ferroelectrics: design rules for practical rotation-driven ferroelectricity in double perovskites and A3B2O7 Ruddlesden-Popper compounds. Advanced Functional Materials, 2013, 23(38): 4810. [27] ZHAO H, LIU X, CHEN X M, et al. Effects of chemical and hydrostatic pressures on structural, magnetic, and electronic properties of R2NiMnO6(R = rare-earth ion) double perovskites. Physical Review B, 2014, 90: 195147. [28] SCHAAK R E, MALLOUK T E. Perovskites by design: a toolbox of solid-state reactions. Chemistry of Materials, 2002, 14(4): 1455. [29] BENEDEK N A, RONDINELLI J M, DJANI H, et al. Understanding ferroelectricity in layered perovskites: new ideas and insights from theory and experiments. Dalton Transactions, 2015, 44(23): 10543. [30] CHEN X M, XIAO Y, LIU X Q, et al. SrLnAlO4, 1991, 47(3): 305. [47] GUIBLIN N, GREBILLE D, LELIGNY H,et al. Ca3Mn2O7. Acta Crystallographica Section C, 2002, 58(1): i3. [48] LOBANOV M V, GREENBLATT M, CASPI E A N,et al. Crystal and magnetic structure of the Ca3Mn2O7 Ruddlesden-Popper phase: neutron and synchrotron X-ray diffraction study. Journal of Physics: Condensed Matter, 2004, 16(29): 5339. [49] OH Y S, LUO X, HUANG F T, et al. Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca, Sr)3Ti2O7 crystals. Nature Materials, 2015, 14(4): 407. [50] MEIER D, SEIDEL J, CANO A, et al. Anisotropic conductance at improper ferroelectric domain walls. Nature Materials, 2012, 11(4): 284. [51] GAO P, BRITSON J, JOKISAARI J R, et al. Atomic-scale mechanisms of ferroelastic domain-wall-mediated ferroelectric switching. Nature Communications, 2013, 4: 2791. [52] WU W D, HORIBE Y, LEE N, et al. Conduction of topologically protected charged ferroelectric domain walls. Physical Review Letters, 2012, 108(7): 077203. [53] GUREEV M Y, TAGANTSEV A K, SETTER N. Head-to-head and tail-to-tail 180° domain walls in an isolated ferroelectric. Physical Review B, 2011, 83(18): 184104. [54] HUANG X R, HU X B, JIANG S S, et al. Theoretical model of 180° domain-wall structures and their transformation in ferroelectric perovskites. Physical Review B, 1997, 55(9): 5534. [55] KURUSHIMA K, YOSHIMOTO W, ISHII Y, et al. Direct observation of charged domain walls in hybrid improper ferroelectric (Ca, Sr)3Ti2O7. Japanese Journal of Applied Physics, 2017, 56(10S): 10PB02. [56] SMITH K A, NOWADNICK E A, FAN S, et al. Infrared nano-spectroscopy of ferroelastic domain walls in hybrid improper ferroelectric Ca3Ti2O7. Nature Communications, 2019, 10: 5235. [57] LEE M H, CHANG C P, HUANG F T, et al. Hidden antipolar order parameter and entangled Néel-type charged domain walls in hybrid improper ferroelectrics. Physical Review Letters, 2017, 119(15): 157601. [58] NAKAJIMA H, SHIGEMATSU K, HORIBE Y, et al. Charged domain walls and crystallographic microstructures in hybrid improper ferroelectric Ca3-xSrxTi2O7. Materials Transactions, 2019, 60(10): 2103 [59] MUNRO J M, AKAMATSU H, PADMANABHAN H, et al. Discovering minimum energy pathways via distortion symmetry groups. Physical Review B, 2018, 98(8): 085107. [60] NOWADNICK E A, FENNIE C J. Domains and ferroelectric switching pathways in Ca3Ti2O7 from first principles. Physical Review B, 2016, 94(10): 104105. [61] HUANG F T, GAO B, KIM J W, et al. Topological defects at octahedral tilting plethora in bi-layered perovskites. NPJ Quantum Materials, 2016, 1: 16017. [62] KRATOCHVILOVA M, HUANG F T, DIAZ M F, et al. Mapping the structural transitions controlled by the trilinear coupling in Ca3-xSrxTi2O7.2019, 125(24): 244102. [63] POMIRO F, ABLITT C, BRISTOWE N C, et al. From first- to second-order phase transitions in hybrid improper ferroelectrics through entropy stabilization. Physical Review B, 2020, 102: 014101. [64] HU Z Z, LU J J, CHEN B H, et al. First-order phase transition and unexpected rigid rotation mode in hybrid improper ferroelectric (La, Al) co-substituted Ca3Ti2O7 ceramics. Journal of Materiomics, 2019, 5(4): 618. [65] NAGAI T, MOCHIZUKI Y, SHIRAKUNI H, et al. Phase transition from weak ferroelectricity to incipient ferroelectricity in Li2Sr(Nb1-xTax)2O7. Chemistry of Materials, 2020, 32(2): 744. [66] HALASYAMANI P S, POEPPELMEIER K R. Noncentrosymmetric oxides. Chemistry of Materials, 1998, 10(10): 2753. [67] MALLICK S, FORTES A D, ZHANG W G, et al. Switching between proper and hybrid-improper polar structures via cation substitution in A2La(TaTi)O7(A = Li, Na). Chemistry of Materials, 2021, 33(7): 2666. [68] CAMMARATA A, RONDINELLI J M. Ferroelectricity from coupled cooperative Jahn-Teller distortions and octahedral rotations in ordered Ruddlesden-Popper manganates. Physical Review B, 2015, 92: 014102. [69] BENEDEK N A. Origin of ferroelectricity in a family of polar oxides: the Dion-Jacobson phases. Inorganic Chemistry, 2014, 53(7): 3769. [70] WU X X, WANG S Y, WONG-NG W, et al. Novel optical properties and induced magnetic moments in Ru-doped hybrid improper ferroelectric Ca3Ti2O7. Journal of Advanced Ceramics, 2021, 10(1): 120. [71] HUANG C, WONG-NG W, LIU W F, et al. Major improvement of ferroelectric and optical properties in Na-doped Ruddlesden-Popper layered hybrid improper ferroelectric compound, Ca3Ti2O7. Journal of Alloys and Compounds, 2019, 770: 582. [72] JIANG Y, WANG S Y, LEI Y L, et al. Negative piezoelectric behaviors in hybrid improper ferroelectric Ca3-xNaxTi2O7 (x = 0, 0.01) ceramics. Journal of the American Ceramic Society, 2020, 103(8): 4429. [73] LI G J, LIU X Q, LU J J, et al. Crystal structural evolution and hybrid improper ferroelectricity in Ruddlesden-Popper Ca3-xSrxTi2O7 ceramics. Journal of Applied Physics, 2018, 123(1): 014101. [74] LI S T, BIROL T. Suppressing the ferroelectric switching barrier in hybrid improper ferroelectrics. NPJ Computational Materials, 2020, 6: 168. [75] JACOB K T, GUPTA S. Phase diagram of the system Ca-Ti-O at 1200 K. Bulletin of Materials Science, 2009, 32(6): 611. [76] JACOB K T, ABRAHAM K P. Thermodynamic properties of calcium titanates: CaTiO3, Ca4Ti3O10, and Ca3Ti2O7. The Journal of Chemical Thermodynamics, 2009, 41(6): 816. [77] GONG W P, WU L L, NAVROTSKY A. Combined experimental and computational investigation of thermodynamics and phase equilibria in the CaO-TiO2 system. Journal of the American Ceramic Society, 2018, 101(3): 1361. [78] PFAFF G. Synthesis of calcium titanate powders by the Sol-Gel process. Chemistry of Materials, 1994, 6(1): 58. [79] ZHOU C, CAI W, ZHANG Q W, et al. Enhancement in hybrid improper ferroelectricity of Ca3Ti2O7 ceramics by a two-stage sintering. Materials Chemistry and Physics, 2021, 258: 124001. [80] WU H D, CAI W, ZHOU C, et al. Remarkable enhancement in hybrid improper ferroelectricity of Ca3Ti2O7 ceramics by a simple Sol-Gel process. Materials Letters, 2020, 278: 128447. [81] LI X, YANG L, LI C F, et al. Ultra-low coercive field of improper ferroelectric Ca3Ti2O7 epitaxial thin films. 2017, 110(4): 042901. [82] LU X Z, RONDINELLI J M. Epitaxial-strain-induced polar-to-nonpolar transitions in layered oxides. Nature Materials, 2016, 15(9): 951. [83] SHI Y, WANG S Y, MA S, et al. Nanoscale imaging of ferroelectric domain and resistance switching in hybrid improper ferroelectric Ca3Ti2O7 thin films. Physics Letters A, 2020, 384(25): 126609. [84] CHEN B H, SUN T L, LIU X Q, et al. Enhanced hybrid improper ferroelectricity in Sr3-xBaxSn2O7 ceramics with a Ruddlesden-Popper (R-P) structure. Applied Physics Letters, 2020, 116(4): 042903. [85] LU J J, LIU X Q, MA X, et al. Crystal structures, dielectric properties, and phase transition in hybrid improper ferroelectric Sr3Sn2O7-based ceramics. Journal of Applied Physics, 2019, 125(4): 044101. [86] HU Z Z, LU J J, CHEN B H, et al. Improved ferroelectric properties in hybrid improper ferroelectric Sr3-xBaxZr2O7. Journal of Alloys and Compounds, 2021, 866: 158705. [87] HUANG L F, LU X Z, RONDINELLI J M. Tunable negative thermal expansion in layered perovskites from quasi-two-dimensional vibrations. Physical Review Letters, 2016, 117(11): 115901. [88] ABLITT C, MCCAY H, CRADDOCK S, et al. Tolerance factor control of uniaxial negative thermal expansion in a layered perovskite. Chemistry of Materials, 2020, 32(1): 605. [89] SENN M S, MURRAY C A, LUO X, et al. Symmetry switching of negative thermal expansion by chemical control. Journal of the American Chemical Society, 2016, 138(17): 5479. [90] GLAMAZDA A, WULFERDING D, LEMMENS P, et al. Soft tilt and rotational modes in the hybrid improper ferroelectric Ca3Mn2O7. Physical Review B, 2018, 97(9): 094104. [91] YE F, WANG J C, SHENG J M, et al. Soft antiphase tilt of oxygen octahedra in the hybrid improper multiferroic Ca3Mn1.9Ti0.1O7. Physical Review B, 2018, 97(4): 041112. [92] LIU S, ZHANG H, GHOSE S, et al. Nature of the structural symmetries associated with hybrid improper ferroelectricity in Ca3X2O7, 2020, 125(1): 017601. [99] HARRIS A B.Symmetry analysis for the Ruddlesden-Popper systems Ca3Mn2O7 and Ca3Ti2O7.Physical Review B, 2011, 84(6): 064116. [100] ZHU W K, PI L, HUANG Y J,et al. Electrically induced decrease of magnetization in Ca3Mn2O7. 2012, 101(19): 192407. [101] LU J B, MA C. Oxygen octahedral coupling and structural reconstruction at the intergrowth interface in bilayered Ca3Mn2O7. Acta Materialia, 2017, 129: 26. [102] JUNG W H.Weak ferromagnetism ofn=2 Ruddlesden-Popper Ca3Mn2O7 system. Journal of Materials Science Letters, 2000, 19: 2037. [103] HUANG F T, XUE F, GAO B,et al. Domain topology and domain switching kinetics in a hybrid improper ferroelectric. Nature Communications, 2016, 7: 11602. [104] BARANOVSKIY A, AMOUYAL Y. Structural stability of calcium-manganate based CaO(CaMnO3)m (m = 1, 2, 3, ∞) compounds for thermoelectric applications. Journal of Alloys and Compounds, 2016, 687: 562. [105] LIU M F, ZHANG Y, LIN L F, et al. Direct observation of ferroelectricity in Ca3Mn2O7 and its prominent light absorption. Applied Physics Letters, 2018, 113(2): 022902. [106] LI S Y, WANG S Y, LU Y G, et al. Exchange bias effect in hybrid improper ferroelectricity Ca2.94Na0.06Mn2O7. AIP Advances, 2018, 8(1): 015009. [107] BARROZO P, SMÅBRÅTEN D R, TANG Y L, et al. Defect-enhanced polarization switching in the improper ferroelectric LuFeO3. Advanced Materials, 2020, 32(23): e2000508. [108] MORIYA T. New mechanism of anisotropic superexchange interaction. Physical Review Letters, 1960, 4(5): 228. [109] COCHRAN W. Crystal stability and the theory of ferroelectricity. Physical Review Letters, 1959, 3(9): 412. [110] PEREZ-MATO J M, AROYO M, GARCÍA A, et al. Competing structural instabilities in the ferroelectric Aurivillius compound SrBi2Ta2O9. Physical Review B, 2004, 70(21): 214111. [111] ZEMP Y, TRASSIN M, GRADAUSKAITE E, et al. Magnetoelectric coupling in the multiferroic hybrid-improper ferroelectric Ca3Mn1.9Ti0.1O7. Physical Review B, 2024, 109(18): 184417. [112] XU X H, WANG Y Z, HUANG F T, et al. Highly tunable ferroelectricity in hybrid improper ferroelectric Sr3Sn2O7. Advanced Functional Materials, 2020, 30(42): 2003623. [113] CHEN Q S, ZHANG B H, CHEN B H, et al. Distortion modes and ferroelectric properties in hybrid improper ferroelectric Sr3(Sn, Zr)2O7 ceramics. Journal of Applied Physics, 2022, 131(18): 184102. [114] KAMIMURA S, YAMADA H, XU C N. Strong reddish-orange light emission from stress-activated Srn+1SnnO3n+1: Sm3+ (n=1, 2, ∞) with perovskite-related structures. Applied Physics Letters, 2012, 101(9): 091113. [115] GREEN M A, PRASSIDES K, DAY P, et al. Structure of the n=2 and n=∞ member of the Ruddlesden-Popper series, Srn+1SnnO3n+1. International Journal of Inorganic Materials, 2000, 2(1): 35. [116] BENEDEK N A, MULDER A T, FENNIE C J. Polar octahedral rotations: a path to new multifunctional materials. Journal of Solid State Chemistry, 2012, 195: 11. [117] WANG Y Z, HUANG F T, LUO X, et al. The first room-temperature ferroelectric Sn insulator and its polarization switching kinetics. Advanced Materials, 2017, 29(2): 1601288. [118] YOSHIDA S, AKAMATSU H, TSUJI R, et al. Hybrid improper ferroelectricity in (Sr, Ca)3Sn2O7 and beyond: universal relationship between ferroelectric transition temperature and tolerance factor in n = 2 Ruddlesden-Popper phases. Journal of the American Chemical Society, 2018, 140(46): 15690. [119] YOSHIDA S, FUJITA K, AKAMATSU H, et al. Ferroelectric Sr3Zr2O7: competition between hybrid improper ferroelectric and antiferroelectric mechanisms. Advanced Functional Materials, 2018, 28(30): 1801856. [120] LIU X Q, LU J J, CHEN B H, et al. Hybrid improper ferroelectricity and possible ferroelectric switching paths in Sr3Hf2O7. Journal of Applied Physics, 2019, 125(11): 114105. [121] GUO Z, ZHANG Z D, LIU X Q, et al. Hybrid improper ferroelectricity in La2Sr(Sc1-xFex)2O7 ceramics with double-layered Ruddlesden-Popper structures. Applied Physics Letters, 2024, 125(4): 042902. [122] ZHANG R H, ABBETT B M, READ G, et al. La2SrCr2O7: controlling the tilting distortions of n = 2 Ruddlesden-Popper phases through A-site cation order. Inorganic Chemistry, 2016, 55(17): 8951. [123] YI W, KAWASAKI T, ZHANG Y, et al. La2SrSc2O7: A-site cation disorder induces ferroelectricity in Ruddlesden-Popper layered perovskite oxide. Journal of the American Chemical Society, 2024, 146(7): 4570. [124] FLOROS N, MICHEL C, HERVIEU M, et al. New n = 2 members of the Li2Srn+1MnO3n+1 family, closely related to the Ruddlesden-Popper phases: structure and non-stoichiometry. Journal of Materials Chemistry, 9(12): 3101. [125] GALVEN C, FOURQUET J L, SUARD E, et al. Mechanism of a reversible CO2 capture monitored by the layered perovskite Li2SrTa2O7. Dalton Transactions, 2010, 39(17): 4191. [126] GALVEN C, MOUNIER D, PAGNIER T, et al. Thermal structural characterization of the acentric layered perovskite LiHSrTa2O7: X-ray and neutron diffraction, SHG and Raman experiments. Dalton Transactions, 2014, 43(39): 14841. [127] SINGH S K, MURTHY V R K. Effect of crystal structure on microwave dielectric properties of Li2SrTa2(1-x)Nb2xO7 compounds. Materials Research Bulletin, 2015, 70: 514. [128] SINGH S K, MURTHY V R K. Microwave dielectric properties of Li2SrTa2(1-x)Nb2xO7 ceramics investigated by Raman spectroscopy. Ceramics International, 2016, 42(6): 7284. [129] UPPULURI R, AKAMATSU H, SEN GUPTA A, et al. Competing polar and antipolar structures in the Ruddlesden-Popper layered perovskite Li2SrNb2O7. Chemistry of Materials, 2019, 31(12): 4418. [130] NAGAI T, SHIRAKUNI H, NAKANO A, et al. Weak ferroelectricity in n = 2 pseudo Ruddlesden-Popper-type niobate Li2SrNb2O7. Chemistry of Materials, 2019, 31(16): 6257. [131] PAGNIER T, ROSMAN N, GALVEN C, et al. Phase transition in the Ruddlesden-Popper layered perovskite Li2SrTa2O7. Journal of Solid State Chemistry, 2009, 182(2): 317. [132] MOCHIZUKI Y, NAGAI T, SHIRAKUNI H, et al. Coexisting mechanisms for the ferroelectric phase transition in Li2SrNb2O7. Chemistry of Materials, 2021, 33(4): 1257. [133] LIANG Z H, TANG K B, SHAO Q, et al. Synthesis, crystal structure, and photocatalytic activity of a new two-layer Ruddlesden-Popper phase, Li2CaTa2O7. Journal of Solid State Chemistry, 2008, 181(4): 964. [134] GALVEN C, MOUNIER D, BOUCHEVREAU B, et al. Phase transitions in the Ruddlesden-Popper phase Li2CaTa2O7: X-ray and neutron powder thermodiffraction, TEM, Raman, and SHG experiments. Inorganic Chemistry, 2016, 55(5): 2309. [135] ZHANG B H, HU Z Z, CHEN B H, et al. Room-temperature ferroelectricity in A-site ordered Ruddlesden-Popper Li2CaTa2O7 ceramics. Journal of Materiomics, 2020, 6(3): 593. [136] PITCHER M J, MANDAL P, DYER M S, et al. Tilt engineering of spontaneous polarization and magnetization above 300 K in a bulk layered perovskite. Science, 2015, 347(6220): 420. [137] BATTLE P D, MILLBURN J E, ROSSEINSKY M J, et al. Neutron diffraction study of the structural and electronic properties of Sr2HoMn2O7 and Sr2YMn2O7. Chemistry of Materials, 1997, 9(12): 3136. [138] ZHANG R H, SENN M S, HAYWARD M A. Directed lifting of inversion symmetry in Ruddlesden-Popper oxide-fluorides: toward ferroelectric and multiferroic behavior. Chemistry of Materials, 2016, 28(22): 8399. [139] GUPTA A S, AKAMATSU H, STRAYER M E, et al. Improper inversion symmetry breaking and piezoelectricity through oxygen octahedral rotations in layered perovskite family, LiRTiO4, 2024, 10(1): 145. [140] SEN GUPTA A, AKAMATSU H, BROWN F G,et al. Competing structural instabilities in the Ruddlesden-Popper derivatives HRTiO4(R = rare earths): oxygen octahedral rotations inducing noncentrosymmetricity and layer sliding retaining centrosymmetricity. Chemistry of Materials, 2017, 29(2): 656. [141] AKAMATSU H, FUJITA K, KUGE T,et al. A-site cation size effect on oxygen octahedral rotations in acentric Ruddlesden-Popper alkali rare-earth titanates. Physical Review Materials, 2019, 3(6): 065001. [142] AKAMATSU H, FUJITA K, KUGE T,et al. Inversion symmetry breaking by oxygen octahedral rotations in the Ruddlesden-Popper NaRTiO4 family. Physical Review Letters, 2014, 112(18): 187602. [143] RODGERS J A, BATTLE P D, DUPRÉ N,et al. Cation and spin ordering in the n = 1 Ruddlesden-Popper phase La2Sr2LiRuO8. Chemistry of Materials, 2004, 16(22): 4257. [144] NISHIMOTO S, MATSUDA M, HARJO S,et al. Structure determination of n =1 Ruddlesden-Popper compound HLaTiO4 by powder neutron diffraction. Journal of the European Ceramic Society, 2006, 26(4/5): 725. [145] NISHIMOTO S, MATSUDA M, HARJO S,et al. Structural change in a series of protonated layered perovskite compounds, HLnTiO4(Ln=La, Nd and Y). Journal of Solid State Chemistry, 2006, 179(6): 1892. [146] BYEON S H, YOON J J, LEE S O.A new family of protonated oxides HLnTiO4(Ln= La, Nd, Sm, and Gd).Journal of Solid State Chemistry, 1996, 127(1): 119. [147] SILYUKOV O I, ABDULAEVA L D, BUROVIKHINA A A,et al. Phase transformations during HLnTiO4(Ln=La, Nd) thermolysis and photocatalytic activity of obtained compounds. Journal of Solid State Chemistry, 2015, 226: 101. [148] BALACHANDRAN P V, PUGGIONI D, RONDINELLI J M.Crystal-chemistry guidelines for noncentrosymmetric A2BO4 Ruddlesden-Popper oxides.Inorganic Chemistry, 2014, 53(1): 336. [149] ZHANG B H, XU D M, CHEN B H, et al. Hybrid improper ferroelectricity in A-site cation ordered Li2La2Ti3O10 ceramic with triple-layer Ruddlesden-Popper structure.Applied Physics Letters, 2021, 118(5): 052903. [150] ZHANG B H, XU D M, GUO R Z,et al. Hybrid improper ferroelectricity and phase transition behavior of Li2Nd2Ti3O10 ceramics with A-site ordered triple-layer Ruddlesden-Popper structure. Journal of Materiomics, 2024, 10(1): 145. |
[1] | 海热古·吐逊, 郭乐, 丁嘉仪, 周嘉琪, 张学良, 努尔尼沙·阿力甫. 上转换荧光探针辅助的光学成像技术在肿瘤显影中的应用研究进展[J]. 无机材料学报, 2025, 40(2): 145-158. |
[2] | 孙树娟, 郑南南, 潘昊坤, 马猛, 陈俊, 黄秀兵. 单原子催化剂制备方法的研究进展[J]. 无机材料学报, 2025, 40(2): 113-127. |
[3] | 陶桂龙, 支国伟, 罗添友, 欧阳佩东, 衣新燕, 李国强. 空腔型薄膜体声波滤波器的关键技术进展[J]. 无机材料学报, 2025, 40(2): 128-144. |
[4] | 周帆, 田志林, 李斌. 热防护系统用碳化物超高温陶瓷抗烧蚀涂层研究进展[J]. 无机材料学报, 2025, 40(1): 1-16. |
[5] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[6] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[7] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[8] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[9] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[10] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[11] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[12] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[13] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[14] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[15] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||